IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00325939.html
   My bibliography  Save this paper

Expansion formulas for European options in a local volatility model

Author

Listed:
  • Eric Benhamou

    (Pricing Partners - Pricing Partners)

  • Emmanuel Gobet

    (MATHFI - Mathématiques financières - LJK - Laboratoire Jean Kuntzmann - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - CNRS - Centre National de la Recherche Scientifique)

  • Mohammed Miri

    (Pricing Partners - Pricing Partners, MATHFI - Mathématiques financières - LJK - Laboratoire Jean Kuntzmann - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - CNRS - Centre National de la Recherche Scientifique)

Abstract

Because of its very general formulation, the local volatility model does not have an analytical solution for European options. In this article, we present a new methodology to derive closed form solutions for the price of any European options. The formula results from an asymptotic expansion, terms of which are Black-Scholes price and related Greeks. The accuracy of the formula depends on the payoff smoothness and it converges with very few terms.

Suggested Citation

  • Eric Benhamou & Emmanuel Gobet & Mohammed Miri, 2010. "Expansion formulas for European options in a local volatility model," Post-Print hal-00325939, HAL.
  • Handle: RePEc:hal:journl:hal-00325939
    DOI: 10.1142/S0219024910005887
    Note: View the original document on HAL open archive server: https://hal.science/hal-00325939
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00325939/document
    Download Restriction: no

    File URL: https://libkey.io/10.1142/S0219024910005887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rama Cont, 2008. "Frontiers in Quantitative Finance: credit risk and volatility modeling," Post-Print hal-00437588, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
    2. Stefano Pagliarani & Andrea Pascucci, 2017. "The exact Taylor formula of the implied volatility," Finance and Stochastics, Springer, vol. 21(3), pages 661-718, July.
    3. Emmanuel Gobet & Ali Suleiman, 2013. "New approximations in local volatility models," Post-Print hal-00523369, HAL.
    4. Gobet, Emmanuel & Miri, Mohammed, 2014. "Weak approximation of averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 475-504.
    5. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    6. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion formulas for European quanto options in a local volatility FX-LIBOR model," Papers 1801.01205, arXiv.org, revised Apr 2018.
    7. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    8. Ning Cai & Chenxu Li & Chao Shi, 2014. "Closed-Form Expansions of Discretely Monitored Asian Options in Diffusion Models," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 789-822, August.
    9. Pagliarani, Stefano & Pascucci, Andrea, 2011. "Analytical approximation of the transition density in a local volatility model," MPRA Paper 31107, University Library of Munich, Germany.
    10. Romain Bompis, 2017. "Weak approximations for arithmetic means of geometric Brownian motions and applications to Basket options," Working Papers hal-01502886, HAL.
    11. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion Formulas For European Quanto Options In A Local Volatility Fx-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-43, March.
    12. Elisa Alòs & Yan Yang, 2014. "A closed-form option pricing approximation formula for a fractional Heston model," Economics Working Papers 1446, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Elisa Alòs & Rafael De Santiago & Josep Vives, 2012. "Calibration of stochastic volatility models via second order approximation: the Heston model case," Economics Working Papers 1346, Department of Economics and Business, Universitat Pompeu Fabra.
    14. Colin Turfus & Alexander Shubert, 2017. "ANALYTIC PRICING OF CoCo BONDS," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-26, August.
    15. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2013. "Analytical expansions for parabolic equations," Papers 1312.3314, arXiv.org, revised Nov 2014.
    16. Elisa Alòs, 2012. "A decomposition formula for option prices in the Heston model and applications to option pricing approximation," Finance and Stochastics, Springer, vol. 16(3), pages 403-422, July.
    17. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    18. Romain Bompis & Emmanuel Gobet, 2012. "Asymptotic and non asymptotic approximations for option valuation," Post-Print hal-00720650, HAL.
    19. Pierre Etoré & Emmanuel Gobet, 2012. "Stochastic expansion for the pricing of call options with discrete dividends," Post-Print hal-00507787, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil Johnson & Guannan Zhao & Eric Hunsader & Jing Meng & Amith Ravindar & Spencer Carran & Brian Tivnan, 2012. "Financial black swans driven by ultrafast machine ecology," Papers 1202.1448, arXiv.org.
    2. Philippe Jacquinot & Nikolay Sukhomlin, 2010. "A direct formulation of implied volatility in the Black-Scholes model," Post-Print hal-02533014, HAL.
    3. Akihiko Takahashi & Yukihiro Tsuzuki, 2014. "A New Improvement Scheme for Approximation Methods of Probability Density Functions," CARF F-Series CARF-F-350, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Tim J. Brereton & Dirk P. Kroese & Joshua C. Chan, 2012. "Monte Carlo Methods for Portfolio Credit Risk," ANU Working Papers in Economics and Econometrics 2012-579, Australian National University, College of Business and Economics, School of Economics.
    5. Puneet Pasricha & Dharmaraja Selvamuthu & Selvaraju Natarajan, 2022. "A contagion process with self-exciting jumps in credit risk applications," Papers 2202.12946, arXiv.org.
    6. Cont, Rama & Kokholm, Thomas, 2009. "A Consistent Pricing Model for Index Options and Volatility Derivatives," Finance Research Group Working Papers F-2009-05, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    7. Cantia, Catalin & Tunaru, Radu, 2017. "A factor model for joint default probabilities. Pricing of CDS, index swaps and index tranches," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 21-35.
    8. Liang, Xue & Wang, Guojing & Dong, Yinghui, 2013. "A Markov regime switching jump-diffusion model for the pricing of portfolio credit derivatives," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 373-381.
    9. Akihiko Takahashi, 2015. "Asymptotic Expansion Approach in Finance," CARF F-Series CARF-F-356, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.
    10. Akihiko Takahashi & Yukihiro Tsuzuki, 2014. "A New Improvement Scheme for Approximation Methods of Probability Density Functions," CARF F-Series CARF-F-341, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    11. Akihiko Takahashi & Yukihiro Tsuzuki, 2013. "A New Improvement Scheme for Approximation Methods of Probability Density Functions," CIRJE F-Series CIRJE-F-874, CIRJE, Faculty of Economics, University of Tokyo.
    12. Kazuki Nagashima & Tsz-Kin Chung & Keiichi Tanaka, 2014. "Asymptotic Expansion Formula of Option Price Under Multifactor Heston Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 351-396, November.
    13. Feng-Hui Yu & Wai-Ki Ching & Jia-Wen Gu & Tak-Kuen Siu, 2017. "Interacting default intensity with a hidden Markov process," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 781-794, May.
    14. Akihiko Takahashi & Yukihiro Tsuzuki, 2014. "A New Improvement Scheme for Approximation Methods of Probability Density Functions," CIRJE F-Series CIRJE-F-917, CIRJE, Faculty of Economics, University of Tokyo.
    15. Rama Cont & Andreea Minca, 2013. "Recovering portfolio default intensities implied by CDO quotes," Post-Print hal-00413730, HAL.
    16. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    17. Carr, Peter & Wu, Liuren, 2016. "Analyzing volatility risk and risk premium in option contracts: A new theory," Journal of Financial Economics, Elsevier, vol. 120(1), pages 1-20.
    18. Hsieh, Ming-Hua & Lee, Yi-Hsi & Shyu, So-De & Chiu, Yu-Fen, 2019. "Estimating multifactor portfolio credit risk: A variance reduction approach," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    19. Akihiko Takahashi & Yukihiro Tsuzuki, 2013. "A New Improvement Scheme for Approximation Methods of Probability Density Functions," CARF F-Series CARF-F-305, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Amel Bentata & Rama Cont, 2015. "Forward equations for option prices in semimartingale models," Finance and Stochastics, Springer, vol. 19(3), pages 617-651, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00325939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.