IDEAS home Printed from https://ideas.repec.org/p/unu/wpaper/wp-2018-84.html
   My bibliography  Save this paper

Climate change and the extractives sector

Author

Listed:
  • Tony Addison

Abstract

The extractives industries must adjust their operations to shifting patterns of demand for oil, natural gas, and coal together with metals and minerals - as policies and new technologies encourage progress along low-carbon pathways in energy, transportation and construction to combat climate change. Adoption of renewable energy is accelerating across the world, but fossil fuels will be in use for many years (with natural gas replacing coal in electricity generation, especially in Asia).

Suggested Citation

  • Tony Addison, 2018. "Climate change and the extractives sector," WIDER Working Paper Series wp-2018-84, World Institute for Development Economic Research (UNU-WIDER).
  • Handle: RePEc:unu:wpaper:wp-2018-84
    as

    Download full text from publisher

    File URL: https://www.wider.unu.edu/sites/default/files/Publications/Working-paper/PDF/wp2018-84.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. World Bank & Ecofys, "undated". "Carbon Pricing Watch 2017," World Bank Publications - Reports 26565, The World Bank Group.
    2. Arent, Douglas & Arndt, Channing & Miller, Mackay & Tarp, Finn & Zinaman, Owen (ed.), 2017. "The Political Economy of Clean Energy Transitions," OUP Catalogue, Oxford University Press, number 9780198802242.
    3. Frederick van der Ploeg, 2016. "Fossil fuel producers under threat," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 32(2), pages 206-222.
    4. Coady, David & Parry, Ian & Sears, Louis & Shang, Baoping, 2017. "How Large Are Global Fossil Fuel Subsidies?," World Development, Elsevier, vol. 91(C), pages 11-27.
    5. Haewon McJeon & Jae Edmonds & Nico Bauer & Leon Clarke & Brian Fisher & Brian P. Flannery & Jérôme Hilaire & Volker Krey & Giacomo Marangoni & Raymond Mi & Keywan Riahi & Holger Rogner & Massimo Tavon, 2014. "Limited impact on decadal-scale climate change from increased use of natural gas," Nature, Nature, vol. 514(7523), pages 482-485, October.
    6. Usher, Will & Strachan, Neil, 2012. "Critical mid-term uncertainties in long-term decarbonisation pathways," Energy Policy, Elsevier, vol. 41(C), pages 433-444.
    7. Kleijn, Rene & van der Voet, Ester, 2010. "Resource constraints in a hydrogen economy based on renewable energy sources: An exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2784-2795, December.
    8. García-Olivares, Antonio & Ballabrera-Poy, Joaquim & García-Ladona, Emili & Turiel, Antonio, 2012. "A global renewable mix with proven technologies and common materials," Energy Policy, Elsevier, vol. 41(C), pages 561-574.
    9. Aidan Rhodes & Jim Skea & Matthew Hannon, 2014. "The Global Surge in Energy Innovation," Energies, MDPI, vol. 7(9), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tony Addison & Alan R. Roe, 2024. "Extractive industries: imperatives, opportunities, and dilemmas in the net-zero transition," WIDER Working Paper Series wp-2024-26, World Institute for Development Economic Research (UNU-WIDER).
    2. Benjamin Jones & Viet Nguyen‐Tien & Robert J. R. Elliott, 2023. "The electric vehicle revolution: Critical material supply chains, trade and development," The World Economy, Wiley Blackwell, vol. 46(1), pages 2-26, January.
    3. Evelyn Dietsche, 2020. "Jobs, skills and the extractive industries: a review and situation analysis," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(3), pages 359-373, October.
    4. Steve Kayizzi-Mugerwa, 2020. "Uganda's nascent oil sector: Revenue generation, investor-stakeholder alignment, and public policy," WIDER Working Paper Series wp-2020-175, World Institute for Development Economic Research (UNU-WIDER).
    5. Raza, Syed Ali & Khan, Komal Akram, 2024. "Climate policy uncertainty and its relationship with precious metals price volatility: Comparative analysis pre and during COVID-19," Resources Policy, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tony Addison, 2018. "Climate change and the extractives sector," WIDER Working Paper Series 84, World Institute for Development Economic Research (UNU-WIDER).
    2. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Clement Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Seck & Marine Simoën, 2019. "Vers une Géopolitique de l'énergie plus complexe ? Une analyse prospective tridimensionnelle de la transition énergétique," Working Papers hal-02971706, HAL.
    4. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    5. Solé, Jordi & García-Olivares, Antonio & Turiel, Antonio & Ballabrera-Poy, Joaquim, 2018. "Renewable transitions and the net energy from oil liquids: A scenarios study," Renewable Energy, Elsevier, vol. 116(PA), pages 258-271.
    6. Elshkaki, Ayman & Graedel, T.E., 2014. "Dysprosium, the balance problem, and wind power technology," Applied Energy, Elsevier, vol. 136(C), pages 548-559.
    7. Davidsson, Simon & Grandell, Leena & Wachtmeister, Henrik & Höök, Mikael, 2014. "Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy," Energy Policy, Elsevier, vol. 73(C), pages 767-776.
    8. Bistline, John E., 2015. "Electric sector capacity planning under uncertainty: Climate policy and natural gas in the US," Energy Economics, Elsevier, vol. 51(C), pages 236-251.
    9. Pihl, Erik & Kushnir, Duncan & Sandén, Björn & Johnsson, Filip, 2012. "Material constraints for concentrating solar thermal power," Energy, Elsevier, vol. 44(1), pages 944-954.
    10. Clément Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Sokhna Seck & Marine Simoën, 2019. "Some Geopolitical issues of the Energy Transition," Working Papers hal-03191388, HAL.
    11. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    12. McCulloch, Neil & Natalini, Davide & Hossain, Naomi & Justino, Patricia, 2022. "An exploration of the association between fuel subsidies and fuel riots," World Development, Elsevier, vol. 157(C).
    13. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    14. Jon Sampedro & Iñaki Arto & Mikel González-Eguino, 2017. "Implications of Switching Fossil Fuel Subsidies to Solar: A Case Study for the European Union," Sustainability, MDPI, vol. 10(1), pages 1-12, December.
    15. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    16. Syed Hasan & Odmaa Narantungalag, & Martin Berka, 2022. "The intended and unintended consequences of large electricity subsidies: evidence from Mongolia," Discussion Papers 2202, School of Economics and Finance, Massey University, New Zealand.
    17. Javier Felipe-Andreu & Antonio Valero & Alicia Valero, 2022. "Territorial Inequalities, Ecological and Material Footprints of the Energy Transition: Case Study of the Cantabrian-Mediterranean Bioregion," Land, MDPI, vol. 11(11), pages 1-22, October.
    18. Monica Santillan Vera & Lilia Garcia Manrique & Isabel Rodriguez Pena & Angel de la Vega Navarro, 2021. "Drivers of Electricity GHG Emissions and the Role of Natural Gas in Mexican Energy Transition," Working Paper Series 1021, Department of Economics, University of Sussex Business School.
    19. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    20. M. Faizal & L. S. Chuah & C. Lee & A. Hameed & J. Lee & M. Shankar, 2019. "Review Of Hydrogen Fuel For Internal Combustion Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 35-46, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unu:wpaper:wp-2018-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Siméon Rapin (email available below). General contact details of provider: https://edirc.repec.org/data/widerfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.