IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-293811.html
   My bibliography  Save this paper

The magnitude of detours faced by commercial flights: A global assessment

Author

Listed:
  • Frédéric Dobruszkes
  • Didier Peeters

Abstract

Scholars and experts in transportation, economics, geography and environmental studies have largely assumed the distance flown by commercial planes represents the shortest route (also known as the great-circle or orthodromic route). However, in the real world, planes follow longer itineraries for various reasons. The magnitude of these detours is assessed through a large, one-week sample of actual flight traces obtained from Flightradar, which we compare with great-circle distances (n=393,360). The results suggest that the average lengthening is 7.6 %, although under conservative hypotheses and with high standard deviation. The shortest flights are proportionally more affected. They also contribute more to the global amount of extra kilometres. The geography of detours by departure airport is the consequence of a wide range of factors. As a result, considering the use of great-circle distances to feed spatial interaction models, emission (or fuel burnt) assessments or airline rankings can lead to significantly skewed outcomes. In addition, detours imposed on certain airlines for geopolitical reasons increase costs, emissions and time aboard, and could be anticompetitive.

Suggested Citation

  • Frédéric Dobruszkes & Didier Peeters, 2019. "The magnitude of detours faced by commercial flights: A global assessment," ULB Institutional Repository 2013/293811, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/293811
    Note: SCOPUS: ar.j
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/293811/3/Postprint_Magnitude-detours.pdf
    File Function: Œuvre complète ou partie de l'œuvre
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hwang, Cherng-Chwan & Shiao, Guo-Chou, 2011. "Analyzing air cargo flows of international routes: an empirical study of Taiwan Taoyuan International Airport," Journal of Transport Geography, Elsevier, vol. 19(4), pages 738-744.
    2. Frédéric Dobruszkes, 2019. "Why do planes not fly the shortest routes? A review," ULB Institutional Repository 2013/293810, ULB -- Universite Libre de Bruxelles.
    3. Matsumoto, Hidenobu, 2007. "International air network structures and air traffic density of world cities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(3), pages 269-282, May.
    4. Christian Azar & Daniel Johansson, 2012. "Valuing the non-CO 2 climate impacts of aviation," Climatic Change, Springer, vol. 111(3), pages 559-579, April.
    5. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    6. Boonekamp, Thijs & Zuidberg, Joost & Burghouwt, Guillaume, 2018. "Determinants of air travel demand: The role of low-cost carriers, ethnic links and aviation-dependent employment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 112(C), pages 18-28.
    7. Edwards, Holly A. & Dixon-Hardy, Darron & Wadud, Zia, 2016. "Aircraft cost index and the future of carbon emissions from air travel," Applied Energy, Elsevier, vol. 164(C), pages 553-562.
    8. Miyoshi, C. & Mason, K.J., 2009. "The carbon emissions of selected airlines and aircraft types in three geographic markets," Journal of Air Transport Management, Elsevier, vol. 15(3), pages 138-147.
    9. Burrell, Kathy, 2011. "Going steerage on Ryanair: cultures of migrant air travel between Poland and the UK," Journal of Transport Geography, Elsevier, vol. 19(5), pages 1023-1030.
    10. Matsumoto, Hidenobu & Domae, Koji & O'Connor, Kevin, 2016. "Business connectivity, air transport and the urban hierarchy: A case study in East Asia," Journal of Transport Geography, Elsevier, vol. 54(C), pages 132-139.
    11. Park, Yongha & O’Kelly, Morton E., 2014. "Fuel burn rates of commercial passenger aircraft: variations by seat configuration and stage distance," Journal of Transport Geography, Elsevier, vol. 41(C), pages 137-147.
    12. Swan, William M. & Adler, Nicole, 2006. "Aircraft trip cost parameters: A function of stage length and seat capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 105-115, March.
    13. Mao, Liang & Wu, Xiao & Huang, Zhuojie & Tatem, Andrew J., 2015. "Modeling monthly flows of global air travel passengers: An open-access data resource," Journal of Transport Geography, Elsevier, vol. 48(C), pages 52-60.
    14. Wu, Chuntao & Jiang, Qiuyue & Yang, Hangjun, 2018. "Changes in cross-strait aviation policies and their impact on tourism flows since 2009," Transport Policy, Elsevier, vol. 63(C), pages 61-72.
    15. Vespermann, Jan & Wald, Andreas, 2011. "Much Ado about Nothing? – An analysis of economic impacts and ecologic effects of the EU-emission trading scheme in the aviation industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1066-1076.
    16. Daniel Albalate & Xavier Fageda, 2016. "High-Technology Employment and Transportation: Evidence from the European Regions," Regional Studies, Taylor & Francis Journals, vol. 50(9), pages 1564-1578, September.
    17. Frédéric Dobruszkes, 2019. "Why do planes not fly the shortest routes? A review," ULB Institutional Repository 2013/289038, ULB -- Universite Libre de Bruxelles.
    18. Zuidberg, Joost, 2014. "Identifying airline cost economies: An econometric analysis of the factors affecting aircraft operating costs," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 86-95.
    19. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.
    20. Martin Cames, 2007. "Tankering strategies for evading emissions trading in aviation," Climate Policy, Taylor & Francis Journals, vol. 7(2), pages 104-120, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chu, Chen & Zhang, Hengcai & Zhang, Jiayin & Cong, Lin & Lu, Feng, 2024. "Assessing impacts of the Russia-Ukraine conflict on global air transportation: From the view of mass flight trajectories," Journal of Air Transport Management, Elsevier, vol. 115(C).
    2. Dobruszkes, Frédéric, 2021. "A global business? Mapping the densest passenger airline routes," Journal of Transport Geography, Elsevier, vol. 92(C).
    3. Sismanidou, Athina & Tarradellas, Joan & Suau-Sanchez, Pere & O'Connor, Kevin, 2024. "Breaking barriers: An assessment of the feasibility of long-haul electric flights," Journal of Transport Geography, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dobruszkes, Frédéric & Peeters, Didier, 2019. "The magnitude of detours faced by commercial flights: A global assessment," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    2. Kağan Albayrak, Muhammed Bilge & Özcan, İsmail Çağrı & Can, Raif & Dobruszkes, Frédéric, 2020. "The determinants of air passenger traffic at Turkish airports," Journal of Air Transport Management, Elsevier, vol. 86(C).
    3. Frédéric Dobruszkes & Christian Vandermotten, 2022. "Do scale and the type of markets matter? Revisiting the determinants of passenger air services worldwide," ULB Institutional Repository 2013/336304, ULB -- Universite Libre de Bruxelles.
    4. Dobruszkes, Frédéric & Vandermotten, Christian, 2022. "Do scale and the type of markets matter? Revisiting the determinants of passenger air services worldwide," Journal of Air Transport Management, Elsevier, vol. 99(C).
    5. Gong, Qiang & Wang, Kun & Fan, Xingli & Fu, Xiaowen & Xiao, Yi-bin, 2018. "International trade drivers and freight network analysis - The case of the Chinese air cargo sector," Journal of Transport Geography, Elsevier, vol. 71(C), pages 253-262.
    6. Katrin Oesingmann, 2022. "The determinants of air cargo flows and the role of multinational agreements: An empirical comparison with trade and air passenger flows," The World Economy, Wiley Blackwell, vol. 45(8), pages 2370-2393, August.
    7. Matsumoto, Hidenobu & Domae, Koji, 2019. "Assessment of competitive hub status of cities in Europe and Asia from an international air traffic perspective," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 88-95.
    8. Matsumoto, Hidenobu & Domae, Koji, 2018. "The effects of new international airports and air-freight integrator's hubs on the mobility of cities in urban hierarchies: A case study in East and Southeast Asia," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 160-166.
    9. Fageda, Xavier & Fioravanti, Reinaldo & Ricover, Andy & Café, Eduardo & Ansaldo, Mariano, 2023. "Econometric analysis of the determinants of air cargo services supply in Latin America and the Caribbean," Transport Policy, Elsevier, vol. 135(C), pages 33-44.
    10. Singh, Jagroop & Sharma, Somesh Kumar & Srivastava, Rajnish, 2019. "What drives Indian Airlines operational expense: An econometric model," Journal of Air Transport Management, Elsevier, vol. 77(C), pages 32-38.
    11. Dobruszkes, Frédéric & Mattioli, Giulio & Mathieu, Laurette, 2022. "Banning super short-haul flights: Environmental evidence or political turbulence?," Journal of Transport Geography, Elsevier, vol. 104(C).
    12. Aydın, Umut & Ülengin, Burç, 2022. "Analyzing air cargo flows of Turkish domestic routes: A comparative analysis of gravity models," Journal of Air Transport Management, Elsevier, vol. 102(C).
    13. Park, Yongha & O’Kelly, Morton E., 2014. "Fuel burn rates of commercial passenger aircraft: variations by seat configuration and stage distance," Journal of Transport Geography, Elsevier, vol. 41(C), pages 137-147.
    14. Oesingmann, Katrin, 2022. "The effect of the European Emissions Trading System (EU ETS) on aviation demand: An empirical comparison with the impact of ticket taxes," Energy Policy, Elsevier, vol. 160(C).
    15. Adeline Montlaur & Luis Delgado & César Trapote-Barreira, 2021. "Analytical Models for CO 2 Emissions and Travel Time for Short-to-Medium-Haul Flights Considering Available Seats," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    16. Chu, Chen & Zhang, Hengcai & Zhang, Jiayin & Cong, Lin & Lu, Feng, 2024. "Assessing impacts of the Russia-Ukraine conflict on global air transportation: From the view of mass flight trajectories," Journal of Air Transport Management, Elsevier, vol. 115(C).
    17. Tsui, Wai Hong Kan & Fung, Michael Ka Yiu, 2016. "Analysing passenger network changes: The case of Hong Kong," Journal of Air Transport Management, Elsevier, vol. 50(C), pages 1-11.
    18. Gizem Kaya & Umut Aydın & Burç Ülengin, 2023. "A Comparison of Forecasting Performance of PPML and OLS estimators: The Gravity Model in the Air Cargo Market," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 112-128, December.
    19. Nguyen, Quang Hai, 2024. "Modeling the volatility of international air freight: A case study of Singapore using the SARIMAX-EGARCH model," Journal of Air Transport Management, Elsevier, vol. 117(C).
    20. Lo, Pak Lam & Martini, Gianmaria & Porta, Flavio & Scotti, Davide, 2020. "The determinants of CO2 emissions of air transport passenger traffic: An analysis of Lombardy (Italy)," Transport Policy, Elsevier, vol. 91(C), pages 108-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/293811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.