IDEAS home Printed from https://ideas.repec.org/p/ucd/wpaper/2005-18.html
   My bibliography  Save this paper

Re-evaluating Hedging Performance

Author

Listed:
  • John Cotter

    (University College Dublin, Ireland)

  • Jim Hanly

    (Dublin Institute of Technology)

Abstract

Mixed results have been documented for the performance of hedging strategies using futures. This paper reinvestigates this issue using an extensive set of performance evaluation metrics across seven international markets. We compare the hedging performance of short and long hedgers using traditional variance based approaches together with modern risk management techniques including Value at Risk, Conditional Value at Risk and approaches based on Downside Risk. Our findings indicate that using these metrics to evaluate hedging performance, yields differences in terms of best hedging strategy as compared with the traditional variance measure. We also find significant differences in performance between short and long hedgers. These results are observed both in-sample and out-of-sample.

Suggested Citation

  • John Cotter & Jim Hanly, 2011. "Re-evaluating Hedging Performance," Working Papers 200518, Geary Institute, University College Dublin.
  • Handle: RePEc:ucd:wpaper:2005/18
    as

    Download full text from publisher

    File URL: http://www.ucd.ie/geary/static/publications/workingpapers/gearywp200518.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Choudhry, Taufiq, 2003. "Short-run deviations and optimal hedge ratio: evidence from stock futures," Journal of Multinational Financial Management, Elsevier, vol. 13(2), pages 171-192, April.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    4. Donald Lien & Y. K. Tse & Albert Tsui, 2002. "Evaluating the hedging performance of the constant-correlation GARCH model," Applied Financial Economics, Taylor & Francis Journals, vol. 12(11), pages 791-798.
    5. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    6. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    9. Conrad, Jennifer & Gultekin, Mustafa N & Kaul, Gautam, 1991. "Asymmetric Predictability of Conditional Variances," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 597-622.
    10. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    11. Chris Brooks & James Chong, 2001. "The Cross‐Currency Hedging Performance of Implied Versus Statistical Forecasting Models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(11), pages 1043-1069, November.
    12. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    13. Dirk Tasche, 2002. "Expected Shortfall and Beyond," Papers cond-mat/0203558, arXiv.org, revised Oct 2002.
    14. Demirer, Riza & Lien, Donald & Shaffer, David R., 2005. "Comparisons of short and long hedge performance: the case of Taiwan," Journal of Multinational Financial Management, Elsevier, vol. 15(1), pages 51-66, February.
    15. Chris Brooks & Olan T. Henry & Gita Persand, 2002. "The Effect of Asymmetries on Optimal Hedge Ratios," The Journal of Business, University of Chicago Press, vol. 75(2), pages 333-352, April.
    16. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    17. Tae H. Park & Lorne N. Switzer, 1995. "Bivariate GARCH estimation of the optimal hedge ratios for stock index futures: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(1), pages 61-67, February.
    18. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    19. repec:cup:etheor:v:11:y:1995:i:1:p:122-50 is not listed on IDEAS
    20. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    21. Demirer, Riza & Lien, Donald, 2003. "Downside risk for short and long hedgers," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 25-44.
    22. Donald Lien & Y. K. Tse, 2002. "Some Recent Developments in Futures Hedging," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 357-396, July.
    23. repec:bla:jecsur:v:16:y:2002:i:3:p:357-96 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Cotter & Jim Hanly, 2012. "Hedging effectiveness under conditions of asymmetry," The European Journal of Finance, Taylor & Francis Journals, vol. 18(2), pages 135-147, February.
    2. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    3. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2022. "The influence of the COVID-19 pandemic on the hedging functionality of Chinese financial markets," Research in International Business and Finance, Elsevier, vol. 59(C).
    4. Stavros Degiannakis & Christos Floros & Enrique Salvador & Dimitrios Vougas, 2022. "On the stationarity of futures hedge ratios," Operational Research, Springer, vol. 22(3), pages 2281-2303, July.
    5. Hou, Yang & Li, Steven, 2013. "Hedging performance of Chinese stock index futures: An empirical analysis using wavelet analysis and flexible bivariate GARCH approaches," Pacific-Basin Finance Journal, Elsevier, vol. 24(C), pages 109-131.
    6. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    7. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    8. Pablo Urtubia & Alfonso Novales & Andrés Mora-Valencia, 2021. "Cross-Hedging Portfolios in Emerging Stock Markets: Evidence for the LATIBEX Index," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    9. Torro, Hipolit, 2009. "Assessing the influence of spot price predictability on electricity futures hedging," MPRA Paper 18892, University Library of Munich, Germany.
    10. Vicente Meneu & Hipòlit Torró, 2003. "Asymmetric covariance in spot‐futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(11), pages 1019-1046, November.
    11. Rozaimah Zainudin & Roselee Shah Shaharudin, 2011. "Multi Mean Garch Approach to Evaluating Hedging Performance in the Crude Palm Oil Futures Market," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 7(1), pages 111-130.
    12. Hsiang-Tai Lee & Jonathan Yoder, 2007. "A bivariate Markov regime switching GARCH approach to estimate time varying minimum variance hedge ratios," Applied Economics, Taylor & Francis Journals, vol. 39(10), pages 1253-1265.
    13. Michael S. Haigh & Matthew T. Holt, 2002. "Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 269-289.
    14. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    15. Sharma, Udayan & Karmakar, Madhusudan, 2023. "Measuring minimum variance hedging effectiveness: Traditional vs. sophisticated models," International Review of Financial Analysis, Elsevier, vol. 87(C).
    16. Ubukata, Masato, 2018. "Dynamic hedging performance and downside risk: Evidence from Nikkei index futures," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 270-281.
    17. Qu, Hui & Wang, Tianyang & Zhang, Yi & Sun, Pengfei, 2019. "Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    18. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    19. Yu‐Sheng Lai, 2022. "Use of high‐frequency data to evaluate the performance of dynamic hedging strategies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 104-124, January.
    20. Olson, Eric & Vivian, Andrew & Wohar, Mark E., 2019. "What is a better cross-hedge for energy: Equities or other commodities?," Global Finance Journal, Elsevier, vol. 42(C).

    More about this item

    Keywords

    Hedging Performance; Lower Partial Moments; Downside Risk; Variance; Semi- Variance; Value at Risk; Conditional Value at Risk;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucd:wpaper:2005/18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geary Tech (email available below). General contact details of provider: https://edirc.repec.org/data/geucdie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.