IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/18892.html
   My bibliography  Save this paper

Assessing the influence of spot price predictability on electricity futures hedging

Author

Listed:
  • Torro, Hipolit

Abstract

A common feature of energy prices is that spot price changes are partially predictable due to weather and demand seasonalities. This paper follows the Ederington and Salas (2008) framework and considers the expected change in spot prices when minimum variance hedge ratios are computed. The poor effectiveness of hedging strategies obtained in previous studies on electricity was because the standard hedging approach underestimates the effectiveness of hedging. In the empirical study made in this paper, weekly spot price risk is hedged with weekly futures in the Nord Pool electricity market. In this case, the optimal selection of the futures contract may produce risk reductions whose values vary between 60% and 80% – depending on the hedging duration (one to three weeks) and the analysed sub-period (in-sample and out-of-sample sub-periods).

Suggested Citation

  • Torro, Hipolit, 2009. "Assessing the influence of spot price predictability on electricity futures hedging," MPRA Paper 18892, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:18892
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/18892/1/MPRA_paper_18892.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    3. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    4. Eugene F. Fama & Kenneth R. French, 2015. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums, and the Theory of Storage," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 4, pages 79-102, World Scientific Publishing Co. Pte. Ltd..
    5. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    6. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    7. Tae H. Park & Lorne N. Switzer, 1995. "Bivariate GARCH estimation of the optimal hedge ratios for stock index futures: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(1), pages 61-67, February.
    8. Ederington, Louis H. & Salas, Jesus M., 2008. "Minimum variance hedging when spot price changes are partially predictable," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 654-663, May.
    9. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    10. Ólan T. Henry & John Sharma, 1999. "Asymmetric Conditional Volatility and Firm Size: Evidence from Australian Equity Portfolios," Australian Economic Papers, Wiley Blackwell, vol. 38(4), pages 393-406, December.
    11. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    12. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    13. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    14. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    15. Henley, Andrew & Peirson, John, 1998. "Residential energy demand and the interaction of price and temperature: British experimental evidence," Energy Economics, Elsevier, vol. 20(2), pages 157-171, April.
    16. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    17. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    18. Hipòlit Torró & Julio Lucia, 2008. "Short-term electricity futures prices: Evidence on the time-varying risk premium," Working Papers. Serie EC 2008-08, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    19. H. N. E. BystrOm, 2003. "The hedging performance of electricity futures on the Nordic power exchange," Applied Economics, Taylor & Francis Journals, vol. 35(1), pages 1-11.
    20. Mary Lindahl, 1992. "Minimum variance hedge ratios for stock index futures: Duration and expiration effects," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 12(1), pages 33-53, February.
    21. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    22. Carter, Colin A., 1999. "Commodity futures markets: a survey," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 43(2), pages 1-39, June.
    23. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    24. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    25. Donald Lien & Y. K. Tse, 2002. "Some Recent Developments in Futures Hedging," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 357-396, July.
    26. repec:bla:jecsur:v:16:y:2002:i:3:p:357-96 is not listed on IDEAS
    27. Moulton, Jonathan S., 2005. "California electricity futures: the NYMEX experience," Energy Economics, Elsevier, vol. 27(1), pages 181-194, January.
    28. Peirson, John & Henley, Andrew, 1994. "Electricity load and temperature : Issues in dynamic specification," Energy Economics, Elsevier, vol. 16(4), pages 235-243, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debbie Dupuis, Geneviève Gauthier, and Fréderic Godin, 2016. "Short-term Hedging for an Electricity Retailer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    2. Martínez, Beatriz & Torró, Hipòlit, 2018. "Hedging spark spread risk with futures," Energy Policy, Elsevier, vol. 113(C), pages 731-746.
    3. Vicente Meneu & Hipòlit Torró, 2003. "Asymmetric covariance in spot‐futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(11), pages 1019-1046, November.
    4. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    5. Pablo Urtubia & Alfonso Novales & Andrés Mora-Valencia, 2021. "Cross-Hedging Portfolios in Emerging Stock Markets: Evidence for the LATIBEX Index," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    6. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    7. John Cotter & Jim Hanly, 2006. "Reevaluating hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(7), pages 677-702, July.
    8. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    9. John Cotter & Jim Hanly, 2012. "Hedging effectiveness under conditions of asymmetry," The European Journal of Finance, Taylor & Francis Journals, vol. 18(2), pages 135-147, February.
    10. Kim Liow & Zhiwei Chen & Jingran Liu, 2011. "Multiple Regimes and Volatility Transmission in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 42(3), pages 295-328, April.
    11. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    12. Caporin, Massimiliano, 2013. "Equity and CDS sector indices: Dynamic models and risk hedging," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 261-275.
    13. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2022. "The influence of the COVID-19 pandemic on the hedging functionality of Chinese financial markets," Research in International Business and Finance, Elsevier, vol. 59(C).
    14. repec:dau:papers:123456789/6808 is not listed on IDEAS
    15. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    16. Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
    17. Lin, Xiaoqiang & Chen, Qiang & Tang, Zhenpeng, 2014. "Dynamic hedging strategy in incomplete market: Evidence from Shanghai fuel oil futures market," Economic Modelling, Elsevier, vol. 40(C), pages 81-90.
    18. Lim, Siew Hoon & Turner, Peter A., 2016. "Airline Fuel Hedging: Do Hedge Horizon and Contract Maturity Matter?," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 55(1), April.
    19. Michael S. Haigh & Matthew T. Holt, 2002. "Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 269-289.
    20. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    21. Dungey, Mardi & Henry, Olan T & Hvodzdyk, Lyudmyla, 2013. "The impact of jumps and thin trading on realized hedge ratios," Working Papers 2013-02, University of Tasmania, Tasmanian School of Business and Economics, revised 28 Mar 2013.

    More about this item

    Keywords

    electricity markets; futures; hedging ratio; electricity price risk;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:18892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.