IDEAS home Printed from https://ideas.repec.org/p/ihs/ihsesp/248.html
   My bibliography  Save this paper

Cointegration Analysis with State Space Models

Author

Listed:
  • Wagner, Martin

    (Department of Economics and Finance, Institute for Advanced Studies, Vienna, Austria and Frisch Centre for Economic Research, Oslo, Norway)

Abstract

This paper presents and exemplifies results developed for cointegration analysis with state space models by Bauer and Wagner in a series of papers. Unit root processes, cointegration and polynomial cointegration are defined. Based upon these definitions the major part of the paper discusses how state space models, which are equivalent to VARMA models, can be fruitfully employed for cointegration analysis. By means of detailing the cases most relevant for empirical applications, the I(1), MFI(1) and I(2) cases, a canonical representation is developed and thereafter some available statistical results are briefly mentioned.

Suggested Citation

  • Wagner, Martin, 2010. "Cointegration Analysis with State Space Models," Economics Series 248, Institute for Advanced Studies.
  • Handle: RePEc:ihs:ihsesp:248
    as

    Download full text from publisher

    File URL: https://irihs.ihs.ac.at/id/eprint/1971
    File Function: First version, 2010
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lutkepohl, Helmut & Claessen, Holger, 1997. "Analysis of cointegrated VARMA processes," Journal of Econometrics, Elsevier, vol. 80(2), pages 223-239, October.
    2. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    3. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(1), pages 95-131, April.
    4. Dietmar Bauer & Martin Wagner, 2005. "Autoregressive Approximations of Multiple Frequency I(1) Processes," Economics Working Papers ECO2005/09, European University Institute.
    5. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    6. Saikkonen, Pentti, 1992. "Estimation and Testing of Cointegrated Systems by an Autoregressive Approximation," Econometric Theory, Cambridge University Press, vol. 8(1), pages 1-27, March.
    7. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    8. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    9. Neusser, Klaus, 2000. "An algebraic interpretation of cointegration," Economics Letters, Elsevier, vol. 67(3), pages 273-281, June.
    10. Granger, C W J & Lee, T H, 1989. "Investigation of Production, Sales and Inventory Relationships Using Multicointegration and Non-symmetric Error Correction Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(S), pages 145-159, Supplemen.
    11. Zellner, Arnold & Palm, Franz, 1974. "Time series analysis and simultaneous equation econometric models," Journal of Econometrics, Elsevier, vol. 2(1), pages 17-54, May.
    12. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, December.
    13. Bauer, Dietmar & Wagner, Martin, 2009. "Using subspace algorithm cointegration analysis: Simulation performance and application to the term structure," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1954-1973, April.
    14. Saikkonen, Pentti & Luukkonen, Ritva, 1997. "Testing cointegration in infinite order vector autoregressive processes," Journal of Econometrics, Elsevier, vol. 81(1), pages 93-126, November.
    15. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    16. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    17. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    18. Gregoir, Stephane & Laroque, Guy, 1994. "Polynomial cointegration estimation and test," Journal of Econometrics, Elsevier, vol. 63(1), pages 183-214, July.
    19. Shiller, Robert J. & Huston McCulloch, J., 1990. "The term structure of interest rates," Handbook of Monetary Economics, in: B. M. Friedman & F. H. Hahn (ed.), Handbook of Monetary Economics, edition 1, volume 1, chapter 13, pages 627-722, Elsevier.
    20. Ahn, Sung K. & Reinsel, Gregory C., 1994. "Estimation of partially nonstationary vector autoregressive models with seasonal behavior," Journal of Econometrics, Elsevier, vol. 62(2), pages 317-350, June.
    21. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    22. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    23. Gregoir, Stéphane, 1999. "Multivariate Time Series With Various Hidden Unit Roots, Part Ii," Econometric Theory, Cambridge University Press, vol. 15(4), pages 469-518, August.
    24. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    25. Campbell, John Y., 1994. "Inspecting the mechanism: An analytical approach to the stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 463-506, June.
    26. Hall, Anthony D & Anderson, Heather M & Granger, Clive W J, 1992. "A Cointegration Analysis of Treasury Bill Yields," The Review of Economics and Statistics, MIT Press, vol. 74(1), pages 116-126, February.
    27. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    28. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
    29. Bauer, Dietmar & Wagner, Martin, 2002. "Estimating cointegrated systems using subspace algorithms," Journal of Econometrics, Elsevier, vol. 111(1), pages 47-84, November.
    30. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    31. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    32. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    33. Campbell, John Y & Shiller, Robert J, 1987. "Cointegration and Tests of Present Value Models," Journal of Political Economy, University of Chicago Press, vol. 95(5), pages 1062-1088, October.
    34. Martin Wagner, 2004. "A Comparison of Johansen's, Bierens’ and the Subspace Algorithm Method for Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 399-424, July.
    35. Dietmar Bauer & Martin Wagner, 2002. "Asymptotic Properties of Pseudo Maximum Likelihood Estimates for Multiple Frequency I(1) Processes," Diskussionsschriften dp0205, Universitaet Bern, Departement Volkswirtschaft.
    36. Aoki, Masanao & Havenner, Arthur, 1989. "A method for approximate representation of vector-valued time series and its relation to two alternatives," Journal of Econometrics, Elsevier, vol. 42(2), pages 181-199, October.
    37. Bierens, Herman J., 1997. "Nonparametric cointegration analysis," Journal of Econometrics, Elsevier, vol. 77(2), pages 379-404, April.
    38. Lee, Hahn Shik, 1992. "Maximum likelihood inference on cointegration and seasonal cointegration," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 1-47.
    39. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiyotaka Sato & Junko Shimizu & Nagendra Shrestha & Shajuan Zhang, 2013. "Industry-specific Real Effective Exchange Rates and Export Price Competitiveness: The Cases of Japan, China, and Korea," Asian Economic Policy Review, Japan Center for Economic Research, vol. 8(2), pages 298-321, December.
    2. Bernardina Algieri, 2015. "Price and non-price competitiveness in export demand: empirical evidence from Italy," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(1), pages 157-183, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Dietmar & Wagner, Martin, 2009. "Using subspace algorithm cointegration analysis: Simulation performance and application to the term structure," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1954-1973, April.
    2. John Y. Campbell & Pierre Perron, 1991. "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots," NBER Chapters, in: NBER Macroeconomics Annual 1991, Volume 6, pages 141-220, National Bureau of Economic Research, Inc.
    3. Lütkepohl, Helmut, 1999. "Vector autoregressions," SFB 373 Discussion Papers 1999,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Valkanov, Rossen, 1999. "The Term Structure with Highly Persistent Interest Rates," University of California at Los Angeles, Anderson Graduate School of Management qt8x91m4hg, Anderson Graduate School of Management, UCLA.
    5. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    6. Lütkepohl, Helmut, 1999. "Vector autoregressive analysis," SFB 373 Discussion Papers 1999,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Dietmar Bauer & Martin Wagner, 2002. "A Canonical Form for Unit Root Processes in the State Space Framework," Diskussionsschriften dp0204, Universitaet Bern, Departement Volkswirtschaft.
    8. Diebold, F.X. & Kilian, L. & Nerlove, Marc, 2006. "Time Series Analysis," Working Papers 28556, University of Maryland, Department of Agricultural and Resource Economics.
    9. Martin Wagner, 2004. "A Comparison of Johansen's, Bierens’ and the Subspace Algorithm Method for Cointegration Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 399-424, July.
    10. Dietmar Bauer & Lukas Matuschek & Patrick de Matos Ribeiro & Martin Wagner, 2020. "A Parameterization of Models for Unit Root Processes: Structure Theory and Hypothesis Testing," Econometrics, MDPI, vol. 8(4), pages 1-54, November.
    11. Boswijk, H. Peter & Franses, Philip Hans & van Dijk, Dick, 2010. "Cointegration in a historical perspective," Journal of Econometrics, Elsevier, vol. 158(1), pages 156-159, September.
    12. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    13. Jürgen Wolters & Uwe Hassler, 2006. "Unit Root Testing," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 4, pages 41-56, Springer.
    14. Haiqi Li Author-Name-First: Haiqi & Jing Zhang & Chaowen Zheng, 2023. "Estimating and Testing for Functional Coefficient Quantile Cointegrating Regression," Economics Discussion Papers em-dp2023-07, Department of Economics, University of Reading.
    15. James Davidson, 2013. "Cointegration and error correction," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 7, pages 165-188, Edward Elgar Publishing.
    16. Beare, Brendan K. & Seo, Won-Ki, 2020. "Representation Of I(1) And I(2) Autoregressive Hilbertian Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 773-802, October.
    17. Noor Ghazali & Soo-Wah Low, 2002. "The expectation hypothesis in emerging financial markets: the case of Malaysia," Applied Economics, Taylor & Francis Journals, vol. 34(9), pages 1147-1156.
    18. Lutkepohl, Helmut & Saikkonen, Pentti, 2000. "Testing for the cointegrating rank of a VAR process with a time trend," Journal of Econometrics, Elsevier, vol. 95(1), pages 177-198, March.
    19. Fakhri J. Hasanov & Lester C. Hunt & Ceyhun I. Mikayilov, 2016. "Modeling and Forecasting Electricity Demand in Azerbaijan Using Cointegration Techniques," Energies, MDPI, vol. 9(12), pages 1-31, December.
    20. Entorf, Horst, 1997. "Random walks with drifts: Nonsense regression and spurious fixed-effect estimation," Journal of Econometrics, Elsevier, vol. 80(2), pages 287-296, October.

    More about this item

    Keywords

    State space models; unit roots; cointegration; polynomial cointegration; pseudo maximum likelihood estimation; subspace algorithms;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ihs:ihsesp:248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Doris Szoncsitz (email available below). General contact details of provider: https://edirc.repec.org/data/deihsat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.