Modfiied Conditional AIC in Linear Mixed Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
- Kubokawa, Tatsuya, 2011. "Conditional and unconditional methods for selecting variables in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 641-660, March.
- Srivastava, Muni S. & Kubokawa, Tatsuya, 2010. "Conditional information criteria for selecting variables in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1970-1980, October.
- M. C. Donohue & R. Overholser & R. Xu & F. Vaida, 2011. "Conditional Akaike information under generalized linear and proportional hazards mixed models," Biometrika, Biometrika Trust, vol. 98(3), pages 685-700.
- Sonja Greven & Thomas Kneib, 2010. "On the behaviour of marginal and conditional AIC in linear mixed models," Biometrika, Biometrika Trust, vol. 97(4), pages 773-789.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
- Yuki Kawakubo & Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Conditional AIC under Covariate Shift with Application to Small Area Prediction," CIRJE F-Series CIRJE-F-944, CIRJE, Faculty of Economics, University of Tokyo.
- Yu, Dalei & Zhang, Xinyu & Yau, Kelvin K.W., 2013. "Information based model selection criteria for generalized linear mixed models with unknown variance component parameters," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 245-262.
- Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
- Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.
- Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
- Craiu, Radu V. & Duchesne, Thierry, 2018. "A scalable and efficient covariate selection criterion for mixed effects regression models with unknown random effects structure," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 154-161.
- Masahiro Kojima & Tatsuya Kubokawa, 2013. "Bartlett Adjustments for Hypothesis Testing in Linear Models with General Error Covariance Matrices," CIRJE F-Series CIRJE-F-884, CIRJE, Faculty of Economics, University of Tokyo.
- Dalei Yu, 2016. "Conditional Akaike Information Criteria for a Class of Poisson Mixture Models with Random Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1214-1235, December.
- Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
- Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
- María Xosé Rodríguez‐Álvarez & María Durbán & Paul H.C. Eilers & Dae‐Jin Lee & Francisco Gonzalez, 2023. "Multidimensional adaptive P‐splines with application to neurons' activity studies," Biometrics, The International Biometric Society, vol. 79(3), pages 1972-1985, September.
- Gallardo, Diego I. & Bolfarine, Heleno & Pedroso-de-Lima, Antonio Carlos, 2016. "Destructive weighted Poisson cure rate models with bivariate random effects: Classical and Bayesian approaches," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 31-45.
- Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
- Marhuenda, Yolanda & Morales, Domingo & del Carmen Pardo, María, 2014. "Information criteria for Fay–Herriot model selection," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 268-280.
- Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
- Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
- Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2018. "A Variant of AIC Based on the Bayesian Marginal Likelihood," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 60-84, May.
- Sonja Greven & Fabian Scheipl, 2020. "Comments on: Inference and computation with Generalized Additive Models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 343-350, June.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2013-07-20 (Econometrics)
- NEP-FOR-2013-07-20 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2013cf895. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.