IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/ad83a546-fb09-408e-80cc-b4b2db763d37.html
   My bibliography  Save this paper

Extreme Value Statistics in Semi-Supervised Models

Author

Listed:
  • Ahmed, Hanan

    (Tilburg University, Center For Economic Research)

  • Einmahl, John

    (Tilburg University, Center For Economic Research)

  • Zhou, Chen

Abstract

No abstract is available for this item.

Suggested Citation

  • Ahmed, Hanan & Einmahl, John & Zhou, Chen, 2021. "Extreme Value Statistics in Semi-Supervised Models," Discussion Paper 2021-007, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:ad83a546-fb09-408e-80cc-b4b2db763d37
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/48477835/2021_007.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    2. Stuart G. Coles & David Walshaw, 1994. "Directional Modelling of Extreme Wind Speeds," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 139-157, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Hanan, 2022. "Extreme value statistics using related variables," Other publications TiSEM 246f0f13-701c-4c0d-8e09-e, Tilburg University, School of Economics and Management.
    2. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    3. Einmahl, J.H.J. & de Haan, L.F.M. & Piterbarg, V.I., 2001. "Nonparametric estimation of the spectral measure of an extreme value distribution," Other publications TiSEM c3485b9b-a0bd-456f-9baa-0, Tilburg University, School of Economics and Management.
    4. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    5. Guzmics Sándor & Pflug Georg Ch., 2020. "A new extreme value copula and new families of univariate distributions based on Freund’s exponential model," Dependence Modeling, De Gruyter, vol. 8(1), pages 330-360, January.
    6. Goegebeur, Yuri & Guillou, Armelle & Qin, Jing, 2024. "Dependent conditional tail expectation for extreme levels," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    7. Ahmed, Hanan & Einmahl, John, 2018. "Improved Estimation of the Extreme Value Index Using Related Variables," Other publications TiSEM 78738894-06ad-409e-ba03-5, Tilburg University, School of Economics and Management.
    8. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    9. Asenova, Stefka & Segers, Johan, 2022. "Extremes of Markov random fields on block graphs," LIDAM Discussion Papers ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    11. Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
    12. Peng, Liang & Qi, Yongcheng, 2008. "Bootstrap approximation of tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1807-1824, September.
    13. Beirlant, Jan & Escobar-Bach, Mikael & Goegebeur, Yuri & Guillou, Armelle, 2016. "Bias-corrected estimation of stable tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 453-466.
    14. Asenova, Stefka Kirilova & Mazo, Gildas & Segers, Johan, 2020. "Inference on extremal dependence in a latent Markov tree model attracted to a Husler-Reiss distribution," LIDAM Discussion Papers ISBA 2020005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    16. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Einmahl, J.H.J. & Khmaladze, E.V., 2007. "Central Limit Theorems For Local Emprical Processes Near Boundaries of Sets," Discussion Paper 2007-66, Tilburg University, Center for Economic Research.
    18. Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Other publications TiSEM edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
    19. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
    20. Michael Falk & Gilles Stupfler, 2021. "The Min-characteristic Function: Characterizing Distributions by Their Min-linear Projections," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 254-282, February.

    More about this item

    Keywords

    Asymptotic normality; extreme value index; semi-supervised inference; tail dependence; variance reduction;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:ad83a546-fb09-408e-80cc-b4b2db763d37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.