IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/70db1acb-e05b-41b4-949c-f5f34789c53e.html
   My bibliography  Save this paper

The Average Covering Tree Value for Directed Graph Games

Author

Listed:
  • Khmelnitskaya, A.
  • Selcuk, O.

    (Tilburg University, Center For Economic Research)

  • Talman, A.J.J.

    (Tilburg University, Center For Economic Research)

Abstract

We introduce a single-valued solution concept, the so-called average covering tree value, for the class of transferable utility games with limited communication structure represented by a directed graph. The solution is the average of the marginal contribution vectors corresponding to all covering trees of the directed graph. The covering trees of a directed graph are those (rooted) trees on the set of players that preserve the dominance relations between the players prescribed by the directed graph. The average covering tree value is component efficient, and under a particular convexity-type condition it is stable. For transferable utility games with complete communication structure the average covering tree value equals to the Shapley value of the game. If the graph is the directed analog of an undirected graph the average covering tree value coincides with the gravity center solution.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Khmelnitskaya, A. & Selcuk, O. & Talman, A.J.J., 2012. "The Average Covering Tree Value for Directed Graph Games," Discussion Paper 2012-037, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:70db1acb-e05b-41b4-949c-f5f34789c53e
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/1428966/2012-037.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    2. Khmelnitskaya, Anna & Talman, Dolf, 2014. "Tree, web and average web values for cycle-free directed graph games," European Journal of Operational Research, Elsevier, vol. 235(1), pages 233-246.
    3. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    4. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    5. Khmelnitskaya, A. & Selçuk, O. & Talman, A.J.J., 2014. "The Shapley Value for Directed Graph Games," Discussion Paper 2014-064, Tilburg University, Center for Economic Research.
    6. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    7. Koshevoy, Gleb & Talman, Dolf, 2014. "Solution concepts for games with general coalitional structure," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 19-30.
    8. Koshevoy, G.A. & Talman, A.J.J., 2011. "Solution Concepts for Games with General Coalitional Structure (Replaces CentER DP 2011-025)," Discussion Paper 2011-119, Tilburg University, Center for Economic Research.
    9. Anna Khmelnitskaya, 2010. "Values for rooted-tree and sink-tree digraph games and sharing a river," Theory and Decision, Springer, vol. 69(4), pages 657-669, October.
    10. Koshevoy, G.A. & Talman, A.J.J., 2011. "Solution Concepts for Games with General Coalitional Structure (Replaced by CentER DP 2011-119)," Discussion Paper 2011-025, Tilburg University, Center for Economic Research.
    11. Lei Li & Xueliang Li, 2011. "The covering values for acyclic digraph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 697-718, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koshevoy, G.A. & Suzuki, T. & Talman, A.J.J., 2013. "Solutions For Games With General Coalitional Structure And Choice Sets," Other publications TiSEM a831011f-430e-4e82-b6f6-5, Tilburg University, School of Economics and Management.
    2. Khmelnitskaya, A. & Selçuk, O. & Talman, A.J.J., 2014. "The Shapley Value for Directed Graph Games," Discussion Paper 2014-064, Tilburg University, Center for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huseynov, T. & Talman, A.J.J., 2012. "The Communication Tree Value for TU-games with Graph Communication," Other publications TiSEM 6ba97d87-1ac6-4af7-a981-a, Tilburg University, School of Economics and Management.
    2. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    3. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    4. Anna Khmelnitskaya & Gerard van der Laan & Dolf Talman, 2016. "Centrality Rewarding Shapley and Myerson Values for Undirected Graph Games," Tinbergen Institute Discussion Papers 16-070/II, Tinbergen Institute.
    5. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    6. Sylvain Béal & Eric Rémila & Philippe Solal, 2012. "Compensations in the Shapley value and the compensation solutions for graph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 157-178, February.
    7. Khmelnitskaya, Anna & Talman, Dolf, 2014. "Tree, web and average web values for cycle-free directed graph games," European Journal of Operational Research, Elsevier, vol. 235(1), pages 233-246.
    8. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2021. "The average tree value for hypergraph games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 437-460, December.
    9. Koshevoy, G.A. & Suzuki, T. & Talman, A.J.J., 2013. "Solutions For Games With General Coalitional Structure And Choice Sets," Discussion Paper 2013-012, Tilburg University, Center for Economic Research.
    10. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644797, HAL.
    11. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    12. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2023. "The two-step average tree value for graph and hypergraph games," Annals of Operations Research, Springer, vol. 323(1), pages 109-129, April.
    13. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    14. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2021. "The average tree value for hypergraph games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 437-460, December.
    15. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Weighted component fairness for forest games," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 144-151.
    16. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    17. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2023. "The two-step average tree value for graph and hypergraph games," Annals of Operations Research, Springer, vol. 323(1), pages 109-129, April.
    18. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "The sequential equal surplus division for sharing a river," MPRA Paper 37346, University Library of Munich, Germany.
    19. Sylvain Béal & Eric Rémila & Philippe Solal, 2022. "Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 818-849, May.
    20. Khmelnitskaya, A. & Talman, A.J.J., 2010. "Tree-Type Values for Cycle-Free Directed Graph Games," Discussion Paper 2010-113, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    TU game; directed communication structure; marginal contribution vector; Myerson value; average tree solution; stability;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:70db1acb-e05b-41b4-949c-f5f34789c53e. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.