IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20220004.html
   My bibliography  Save this paper

Autonomous cars and activity-based bottleneck model: How do in-vehicle activities determine aggregate travel patterns?

Author

Listed:
  • Xiaojuan Yu

    (Zhongnan University of Economics and Law)

  • Vincent A.C. van den Berg

    (Vrije Universiteit Amsterdam)

  • Erik T. Verhoef

    (Vrije Universiteit Amsterdam)

Abstract

When traveling in an autonomous car, the travel time can be used for performing activities other than driving. This paper distinguishes users’ work-related and home-related activities in autonomous cars and proposes an activity-based bottleneck model to investigate travelers’ behavior in the morning commute, shedding light on how the scope to undertake in-vehicle activities affects travelers’ trip-timing preferences and decisions, and therewith social welfare. These welfare effects can be expected to depend on the optimality of both the market for trips, and the market for vehicles. We therefore consider different supply regimes for automobiles, and un-priced congestion versus queue-eliminating road pricing. We reveal analytically the relationship between users’ various in-vehicle activities and trip timing choices by autonomous and normal car users. Three supply regimes for autonomous cars are investigated: welfare-maximizing public supply, competitive marginal cost supply, and profit-maximizing private supply. Pricing rules under different supply regimes are compared analytically, and the relative efficiencies in terms of the welfare gains are compared numerically. Results show that travelers’ in-vehicle activity choices have significant impacts on the travel patterns, congestion externality, supply decisions and the associated welfare effects.

Suggested Citation

  • Xiaojuan Yu & Vincent A.C. van den Berg & Erik T. Verhoef, 2022. "Autonomous cars and activity-based bottleneck model: How do in-vehicle activities determine aggregate travel patterns?," Tinbergen Institute Discussion Papers 22-004/VIII, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20220004
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/22004.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van den Berg, Vincent & Verhoef, Erik T., 2011. "Congestion tolling in the bottleneck model with heterogeneous values of time," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 60-78, January.
    2. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    3. Fosgerau, Mogens & Engelson, Leonid, 2011. "The value of travel time variance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 1-8, January.
    4. Tseng, Yin-Yen & Verhoef, Erik T., 2008. "Value of time by time of day: A stated-preference study," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 607-618, August.
    5. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    6. Fosgerau, Mogens & de Palma, André, 2012. "Congestion in a city with a central bottleneck," Journal of Urban Economics, Elsevier, vol. 71(3), pages 269-277.
    7. Liu, Henry X. & He, Xiaozheng & Recker, Will, 2007. "Estimation of the time-dependency of values of travel time and its reliability from loop detector data," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 448-461, May.
    8. Fosgerau, Mogens & Lindsey, Robin, 2013. "Trip-timing decisions with traffic incidents," Regional Science and Urban Economics, Elsevier, vol. 43(5), pages 764-782.
    9. Börjesson, Maria & Eliasson, Jonas & Franklin, Joel, 2012. "Valuations of travel time variability in scheduling versus mean-variance models," Working papers in Transport Economics 2012:2, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    10. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    11. Hjorth, Katrine & Börjesson, Maria & Engelson, Leonid & Fosgerau, Mogens, 2015. "Estimating exponential scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 230-251.
    12. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    13. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?: The distributional effects of road pricing with heterogeneity in values of time and schedule delay," Journal of Public Economics, Elsevier, vol. 95(7-8), pages 983-992, August.
    14. Kouwenhoven, Marco & de Jong, Gerard C. & Koster, Paul & van den Berg, Vincent A.C. & Verhoef, Erik T. & Bates, John & Warffemius, Pim M.J., 2014. "New values of time and reliability in passenger transport in The Netherlands," Research in Transportation Economics, Elsevier, vol. 47(C), pages 37-49.
    15. Knockaert, Jasper & Verhoef, Erik T. & Rouwendal, Jan, 2016. "Bottleneck congestion: Differentiating the coarse charge," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 59-73.
    16. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    17. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    18. Li, Zhi-Chun & Zhang, Liping, 2020. "The two-mode problem with bottleneck queuing and transit crowding: How should congestion be priced using tolls and fares?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 46-76.
    19. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    3. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    4. Li, Zhi-Chun & Zhang, Liping, 2020. "The two-mode problem with bottleneck queuing and transit crowding: How should congestion be priced using tolls and fares?," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 46-76.
    5. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    6. Yu, Xiaojuan & van den Berg, Vincent A.C. & Li, Zhi-Chun, 2023. "Congestion pricing and information provision under uncertainty: Responsive versus habitual pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    7. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    8. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    9. van den Berg, Vincent A.C., 2024. "Self-financing roads under coarse tolling and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    10. Xiaojuan Yu & Vincent van den Berg & Erik Verhoef, 2019. "Autonomous cars and dynamic bottleneck congestion revisited: how in-vehicle activities determine aggregate travel patterns," Tinbergen Institute Discussion Papers 19-067/VIII, Tinbergen Institute.
    11. Pudāne, Baiba, 2019. "Departure Time Choice and Bottleneck Congestion with Automated Vehicles: Role of On-board Activities," MPRA Paper 96328, University Library of Munich, Germany.
    12. Abegaz, Dereje & Hjorth, Katrine & Rich, Jeppe, 2017. "Testing the slope model of scheduling preferences on stated preference data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 409-436.
    13. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T. & Li, Zhi-Chun, 2022. "Will all autonomous cars cooperate? Brands’ strategic interactions under dynamic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    14. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    15. Engelson, Leonid & Fosgerau, Mogens, 2016. "The cost of travel time variability: Three measures with properties," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 555-564.
    16. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    17. Xiao, Yu & Fukuda, Daisuke, 2015. "On the cost of misperceived travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 96-112.
    18. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    19. Nicolas Coulombel & André de Palma, 2014. "The marginal social cost of travel time variability," Post-Print hal-01100105, HAL.
    20. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T., 2019. "Carpooling with heterogeneous users in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 178-200.

    More about this item

    Keywords

    Activity based modelling; Autonomous cars; Bottleneck model; Private vs public supply; Traffic congestion;
    All these keywords.

    JEL classification:

    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • D62 - Microeconomics - - Welfare Economics - - - Externalities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20220004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.