IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v137y2015icp29-31.html
   My bibliography  Save this article

A simple and focused backtest of value at risk

Author

Listed:
  • Krämer, Walter
  • Wied, Dominik

Abstract

We suggest a simple improvement of recent VaR-backtesting procedures based on time intervals between VaR-violations and show via Monte Carlo that our test has more power than its competitors against various empirically relevant clustering alternatives.

Suggested Citation

  • Krämer, Walter & Wied, Dominik, 2015. "A simple and focused backtest of value at risk," Economics Letters, Elsevier, vol. 137(C), pages 29-31.
  • Handle: RePEc:eee:ecolet:v:137:y:2015:i:c:p:29-31
    DOI: 10.1016/j.econlet.2015.10.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176515004309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2015.10.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
    2. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    3. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    4. Ziggel, Daniel & Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2014. "A new set of improved Value-at-Risk backtests," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 29-41.
    5. Dorfman, Robert, 1979. "A Formula for the Gini Coefficient," The Review of Economics and Statistics, MIT Press, vol. 61(1), pages 146-149, February.
    6. Ardia, David & Hoogerheide, Lennart F., 2014. "GARCH models for daily stock returns: Impact of estimation frequency on Value-at-Risk and Expected Shortfall forecasts," Economics Letters, Elsevier, vol. 123(2), pages 187-190.
    7. Herwartz, Helmut & Raters, Fabian H.C., 2015. "Copula-MGARCH with continuous covariance decomposition," Economics Letters, Elsevier, vol. 133(C), pages 73-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Małecka, 2024. "New runs‐based approach to testing value at risk forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2021-2041, September.
    2. Yannick Hoga & Matei Demetrescu, 2023. "Monitoring Value-at-Risk and Expected Shortfall Forecasts," Management Science, INFORMS, vol. 69(5), pages 2954-2971, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Ahmed BenSaïda & Sabri Boubaker & Duc Khuong Nguyen & Skander Slim, 2018. "Value‐at‐risk under market shifts through highly flexible models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 790-804, December.
    3. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    4. Argyropoulos, Christos & Panopoulou, Ekaterini, 2019. "Backtesting VaR and ES under the magnifying glass," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 22-37.
    5. Thiele, Stephen, 2019. "Detecting underestimates of risk in VaR models," Journal of Banking & Finance, Elsevier, vol. 101(C), pages 12-20.
    6. Wied, Dominik & Weiß, Gregor N.F. & Ziggel, Daniel, 2016. "Evaluating Value-at-Risk forecasts: A new set of multivariate backtests," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 121-132.
    7. Slim, Skander & Dahmene, Meriam & Boughrara, Adel, 2020. "How informative are variance risk premium and implied volatility for Value-at-Risk prediction? International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 22-37.
    8. Leung, Melvern & Li, Youwei & Pantelous, Athanasios A. & Vigne, Samuel A., 2021. "Bayesian Value-at-Risk backtesting: The case of annuity pricing," European Journal of Operational Research, Elsevier, vol. 293(2), pages 786-801.
    9. Thor Pajhede, 2015. "Backtesting Value-at-Risk: A Generalized Markov Framework," Discussion Papers 15-18, University of Copenhagen. Department of Economics.
    10. Nikola Radivojevic & Milena Cvjetkovic & Saša Stepanov, 2016. "The new hybrid value at risk approach based on the extreme value theory," Estudios de Economia, University of Chile, Department of Economics, vol. 43(1 Year 20), pages 29-52, June.
    11. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).
    12. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    13. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    14. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
    15. Leccadito, Arturo & Boffelli, Simona & Urga, Giovanni, 2014. "Evaluating the accuracy of value-at-risk forecasts: New multilevel tests," International Journal of Forecasting, Elsevier, vol. 30(2), pages 206-216.
    16. Marta Małecka, 2021. "Testing for a serial correlation in VaR failures through the exponential autoregressive conditional duration model," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 145-162, March.
    17. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    18. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    19. Sullivan Hu'e & Christophe Hurlin & Yang Lu, 2024. "Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials," Papers 2405.02012, arXiv.org, revised May 2024.
    20. Manabu Asai, 2013. "Heterogeneous Asymmetric Dynamic Conditional Correlation Model with Stock Return and Range," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(5), pages 469-480, August.

    More about this item

    Keywords

    Backtesting; Power; Value at risk;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:137:y:2015:i:c:p:29-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.