Density prediction of stock index returns using GARCH models: Frequentist or Bayesian estimation?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econlet.2012.03.026
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008.
"Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails,"
Tinbergen Institute Discussion Papers
08-050/4, Tinbergen Institute.
- Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Discussion Papers 2008-10, School of Economics, The University of New South Wales.
- Dijk, D. van & Diks, C.G.H. & Panchenko, V., 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," CeNDEF Working Papers 08-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- Geweke, John & Amisano, Gianni, 2010.
"Comparing and evaluating Bayesian predictive distributions of asset returns,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
- Amisano, Gianni & Geweke, John, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 969, European Central Bank.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Amisano, Gianni & Giacomini, Raffaella, 2007.
"Comparing Density Forecasts via Weighted Likelihood Ratio Tests,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
- Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
- James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Luc Bauwens & Michel Lubrano, 1998.
"Bayesian inference on GARCH models using the Gibbs sampler,"
Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
- BAUWENs, Luc & LUBRANO , Michel, 1996. "Bayesian Inference on GARCH Models using the Gibbs Sampler," LIDAM Discussion Papers CORE 1996027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Lubrano, M., 1998. "Bayesian inference on GARCH models using the Gibbs sampler," LIDAM Reprints CORE 1307, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Lubrano, M., 1996. "Bayesian Inference on GARCH Models Using the Gibbs Sampler," G.R.E.Q.A.M. 96a21, Universite Aix-Marseille III.
- Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
- David Ardia, 2008. "Financial Risk Management with Bayesian Estimation of GARCH Models," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-78657-3, February.
- Hoogerheide, Lennart & van Dijk, Herman K., 2010.
"Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
- Lennart Hoogerheide & Herman K. van Dijk, 2008. "Bayesian Forecasting of Value at Risk and Expected Shortfall using Adaptive Importance Sampling," Tinbergen Institute Discussion Papers 08-092/4, Tinbergen Institute.
- Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007.
"On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks,"
Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & VAN DIJK, Herman K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," LIDAM Discussion Papers CORE 2005029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & van DIJK, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," LIDAM Reprints CORE 1922, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," Econometric Institute Research Papers EI 2005-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Teruo Nakatsuma & Hiroki Tsurumi, 1996. "ARMA-GARCH Models: Bayes Estimation Versus MLE, and Bayes Non-stationarity Test," Departmental Working Papers 199619, Rutgers University, Department of Economics.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- David Ardia & Lennart F. Hoogerheide, 2010.
"Efficient Bayesian Estimation and Combination of GARCH-Type Models,"
Tinbergen Institute Discussion Papers
10-046/4, Tinbergen Institute.
- Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
- Ardia, David & Hoogerheide, Lennart F., 2014.
"GARCH models for daily stock returns: Impact of estimation frequency on Value-at-Risk and Expected Shortfall forecasts,"
Economics Letters, Elsevier, vol. 123(2), pages 187-190.
- David Ardia & Lennart Hoogerheide, 2013. "GARCH Models for Daily Stock Returns: Impact of Estimation Frequency on Value-at-Risk and Expected Shortfall Forecasts," Tinbergen Institute Discussion Papers 13-047/III, Tinbergen Institute.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lennart F. Hoogerheide & David Ardia & Nienke Corre, 2011.
"Stock Index Returns' Density Prediction using GARCH Models: Frequentist or Bayesian Estimation?,"
Tinbergen Institute Discussion Papers
11-020/4, Tinbergen Institute.
- Ardia, David & Lennart, Hoogerheide & Nienke, Corré, 2011. "Stock index returns’ density prediction using GARCH models: Frequentist or Bayesian estimation?," MPRA Paper 28259, University Library of Munich, Germany.
- Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
- Ardia, David & Hoogerheide, Lennart F., 2014.
"GARCH models for daily stock returns: Impact of estimation frequency on Value-at-Risk and Expected Shortfall forecasts,"
Economics Letters, Elsevier, vol. 123(2), pages 187-190.
- David Ardia & Lennart Hoogerheide, 2013. "GARCH Models for Daily Stock Returns: Impact of Estimation Frequency on Value-at-Risk and Expected Shortfall Forecasts," Tinbergen Institute Discussion Papers 13-047/III, Tinbergen Institute.
- Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
- Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
- Lukasz Gatarek & Lennart Hoogerheide & Koen Hooning & Herman K. van Dijk, 2013. "Censored Posterior and Predictive Likelihood in Left-Tail Prediction for Accurate Value at Risk Estimation," Tinbergen Institute Discussion Papers 13-060/III, Tinbergen Institute, revised 06 Mar 2014.
- Lennart Hoogerheide & Anne Opschoor & Herman K. van Dijk, 2011. "A Class of Adaptive EM-based Importance Sampling Algorithms for Efficient and Robust Posterior and Predictive Simulation," Tinbergen Institute Discussion Papers 11-004/4, Tinbergen Institute.
- Deschamps, Philippe J., 2012.
"Bayesian estimation of generalized hyperbolic skewed student GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
- Deschamps, Philippe J., 2011. "Bayesian Estimation of Generalized Hyperbolic Skewed Student GARCH Models," DQE Working Papers 16, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 09 Jun 2012.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- N. Alemohammad & S. Rezakhah & S. H. Alizadeh, 2020. "Markov switching asymmetric GARCH model: stability and forecasting," Statistical Papers, Springer, vol. 61(3), pages 1309-1333, June.
- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- Fu, Jin-Yu & Lin, Jin-Guan & Hao, Hong-Xia, 2023. "Volatility analysis for the GARCH–Itô–Jumps model based on high-frequency and low-frequency financial data," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1698-1712.
- Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
- Hoogerheide, Lennart & van Dijk, Herman K., 2010.
"Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
- Lennart Hoogerheide & Herman K. van Dijk, 2008. "Bayesian Forecasting of Value at Risk and Expected Shortfall using Adaptive Importance Sampling," Tinbergen Institute Discussion Papers 08-092/4, Tinbergen Institute.
- Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
- Chen, Qian & Gerlach, Richard H., 2013. "The two-sided Weibull distribution and forecasting financial tail risk," International Journal of Forecasting, Elsevier, vol. 29(4), pages 527-540.
- Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
- LUBRANO, Michel, 1998.
"Smooth transition GARCH models: a Bayesian perspective,"
LIDAM Discussion Papers CORE
1998066, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Michel LUBRANO, 2001. "Smooth Transition Garch Models : a Baysian Perspective," Discussion Papers (REL - Recherches Economiques de Louvain) 2001032, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Lubrano, M., 1999. "Smooth Transition GARCH Models: a Bayesian perspective," G.R.E.Q.A.M. 99a49, Universite Aix-Marseille III.
More about this item
Keywords
GARCH; Bayesian; KLIC; Censored likelihood;All these keywords.
JEL classification:
- C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:116:y:2012:i:3:p:322-325. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.