IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20090064.html
   My bibliography  Save this paper

Axiomatizations of Two Types of Shapley Values for Games on Union Closed Systems

Author

Listed:
  • Rene van den Brink

    (VU University Amsterdam)

  • Ilya Katsev

    (Russian Academy of Sciences)

  • Gerard van der Laan

    (VU University Amsterdam)

Abstract

This discussion paper led to a publication in 'Economic Theory' , 47(1), 175-88. A situation in which a finite set of players can obtain certain payoffs by cooperation can be described by a cooperative game with transferable utility, or simply a TU-game. A (single-valued) solution for TU-games assigns a payoff distribution to every TU-game. A well-known solution is the Shapley value. In the literature various models of games with restricted cooperation can be found. So, instead of allowing all subsets of the player set N to form, it is assumed that the set of feasible coalitions is a subset of the power set of N. In this paper we consider such sets of feasible coalitions that are closed under union, i.e. for any two feasible coalitions also their union is feasible. We consider and axiomatize two solutions or rules for these games that generalize the Shapley value: one is obtained as the conjunctive permission value using a corresponding superior graph, the other is defined as the Shapley value of a modified game similar as the Myerson rule for conference structures.

Suggested Citation

  • Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2009. "Axiomatizations of Two Types of Shapley Values for Games on Union Closed Systems," Tinbergen Institute Discussion Papers 09-064/1, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20090064
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/09064.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gustavo Bergantiños & Silvia Lorenzo-Freire, 2008. "A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 523-538, June.
    2. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    3. RenÊ van den Brink, 1997. "An Axiomatization of the Disjunctive Permission Value for Games with a Permission Structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(1), pages 27-43.
    4. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 349-364, November.
    5. Graham, Daniel A & Marshall, Robert C & Richard, Jean-Francois, 1990. "Differential Payments within a Bidder Coalition and the Shapley Value," American Economic Review, American Economic Association, vol. 80(3), pages 493-510, June.
    6. van den Brink, Rene & Gilles, Robert P., 1996. "Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures," Games and Economic Behavior, Elsevier, vol. 12(1), pages 113-126, January.
    7. E. Algaba & J. M. Bilbao & R. van den Brink & A. Jiménez-Losada, 2003. "Axiomatizations of the Shapley value for cooperative games on antimatroids," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(1), pages 49-65, April.
    8. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    9. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
    10. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    11. Youngsub Chun, 2006. "No-envy in queueing problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 151-162, September.
    12. Yair Tauman & Naoki Watanabe, 2007. "The Shapley Value of a Patent Licensing Game: the Asymptotic Equivalence to Non-cooperative Results," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 30(1), pages 135-149, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvain Béal & Marc Deschamps & Mostapha Diss & Rodrigue Tido Takeng, 2024. "Cooperative games with diversity constraints," Working Papers hal-04447373, HAL.
    2. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2021. "Cohesive efficiency in TU-games: axiomatizations of variants of the Shapley value, egalitarian values and their convex combinations," Annals of Operations Research, Springer, vol. 302(1), pages 23-47, July.
    3. Ulrich Faigle & Michel Grabisch, 2012. "Values for Markovian coalition processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 51(3), pages 505-538, November.
    4. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    5. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    6. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    7. Sylvain Béal & André Casajus & Eric Rémila & Philippe Solal, 2019. "Cohesive efficiency in TU-games: Two extensions of the Shapley value," Working Papers 2019-03, CRESE.
    8. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    9. René Brink & Chris Dietz & Gerard Laan & Genjiu Xu, 2017. "Comparable characterizations of four solutions for permission tree games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(4), pages 903-923, April.
    10. Julia Belau, 2013. "An outside-option-sensitive allocation rule for networks: the kappa-value," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(2), pages 175-188, November.
    11. Sylvain Béal & Issofa Moyouwou & Eric Rémila & Phillippe Solal, 2018. "Cooperative games on intersection closed systems and the Shapley value," Working Papers 2018-06, CRESE.
    12. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    13. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    14. René van den Brink, 2017. "Games with a Permission Structure: a survey on generalizations and applications," Tinbergen Institute Discussion Papers 17-016/II, Tinbergen Institute.
    15. repec:hal:pseose:halshs-00749950 is not listed on IDEAS
    16. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    17. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    18. Emilio Calvo & Esther Gutiérrez-López, 2015. "The value in games with restricted cooperation," Discussion Papers in Economic Behaviour 0115, University of Valencia, ERI-CES.
    19. Derks, Jean, 2018. "The Shapley value of conjunctive-restricted games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 146-151.
    20. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.
    21. Zhengxing Zou & Qiang Zhang, 2018. "Harsanyi power solution for games with restricted cooperation," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 26-47, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    2. René Brink & Chris Dietz & Gerard Laan & Genjiu Xu, 2017. "Comparable characterizations of four solutions for permission tree games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(4), pages 903-923, April.
    3. René Brink, 2012. "On hierarchies and communication," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 721-735, October.
    4. René Brink & Chris Dietz, 2014. "Games with a local permission structure: separation of authority and value generation," Theory and Decision, Springer, vol. 76(3), pages 343-361, March.
    5. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 349-364, November.
    6. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    7. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    8. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 0000. "The Restricted Core for Totally Positive Games with Ordered Players," Tinbergen Institute Discussion Papers 09-038/1, Tinbergen Institute.
    9. René Brink & Gerard Laan & Valeri Vasil’ev, 2014. "Constrained core solutions for totally positive games with ordered players," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 351-368, May.
    10. van den Brink, René & He, Simin & Huang, Jia-Ping, 2018. "Polluted river problems and games with a permission structure," Games and Economic Behavior, Elsevier, vol. 108(C), pages 182-205.
    11. René Brink & Youngsub Chun, 2012. "Balanced consistency and balanced cost reduction for sequencing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(3), pages 519-529, March.
    12. Lei Li & Xueliang Li, 2011. "The covering values for acyclic digraph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 697-718, November.
    13. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Tvede, Mich & Østerdal, Lars Peter, 2017. "Sharing the proceeds from a hierarchical venture," Games and Economic Behavior, Elsevier, vol. 102(C), pages 98-110.
    14. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    15. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    16. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    17. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    18. M. Álvarez-Mozos & R. Brink & G. Laan & O. Tejada, 2017. "From hierarchies to levels: new solutions for games with hierarchical structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1089-1113, November.
    19. Wu, Hao & van den Brink, René & Estévez-Fernández, Arantza, 2024. "Highway toll allocation," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    20. van den Brink, René & González-Arangüena, Enrique & Manuel, Conrado & del Pozo, Mónica, 2014. "Order monotonic solutions for generalized characteristic functions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 786-796.

    More about this item

    Keywords

    TU-game; restricted cooperation; union closed system; Shapley value; permission value; superior graph; axiomatization;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20090064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.