IDEAS home Printed from https://ideas.repec.org/p/ter/wpaper/0066.html
   My bibliography  Save this paper

Does cointegration matter? An analysis in a RBC perspective

Author

Listed:
  • Bisio Laura
  • Faccini Andrea

Abstract

The aim of this paper is to verify if a proper SVEC representation of a standard Real Business Cycle model exists even when the capital stock series is omitted. The argument is relevant as the common unavailability of su¢ ciently long medium-frequency capital series prevent researchers from including capital in the widespread structural VAR (SVAR) representations of DSGE models - which is supposed to be the cause of the SVAR biased estimates. Indeed, a large debate about the truncation and small sample bias a¤ecting the SVAR performance in approximating DSGE models has been recently rising. In our view, it might be the case of a smaller degree of estimates distorsions when the RBC dynamics is approximated through a SVEC model as the information provided by the cointegrating relations among some variables might compensate the exclusion of the capital stock series from the empirical representation of the model.

Suggested Citation

  • Bisio Laura & Faccini Andrea, 2010. "Does cointegration matter? An analysis in a RBC perspective," wp.comunite 0066, Department of Communication, University of Teramo.
  • Handle: RePEc:ter:wpaper:0066
    as

    Download full text from publisher

    File URL: https://www.dipecodir.it/wpcom/data/wp_no_66_2010.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Francesco Giuli & Massimiliano Tancioni, 2010. "Contractionary Effects of Supply Shocks: Evidence and Theoretical Interpretation," Working Papers in Public Economics 131, University of Rome La Sapienza, Department of Economics and Law.
    3. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    4. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    5. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    6. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    7. Renee Fry & Adrian Pagan, 2005. "Some Issues In Using Vars For Macroeconometric Research," CAMA Working Papers 2005-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Pagan, A.R. & Pesaran, M. Hashem, 2008. "Econometric analysis of structural systems with permanent and transitory shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3376-3395, October.
    9. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    10. Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," NBER Chapters, in: NBER Macroeconomics Annual 1988, Volume 3, pages 111-156, National Bureau of Economic Research, Inc.
    11. Marco Del Negro & Frank Schorfheide & Frank Smets & Raf Wouters, 2004. "On the fit and forecasting performance of New Keynesian models," FRB Atlanta Working Paper 2004-37, Federal Reserve Bank of Atlanta.
    12. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
    13. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    14. Edward N. Gamber & Frederick L. Joutz, 1997. "Real Wages over the Business Cycle," Eastern Economic Journal, Eastern Economic Association, vol. 23(3), pages 277-291, Summer.
    15. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.
    16. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    17. Galí, Jordi & Rabanal, Pau, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBC Model Fit Post-War US Data?," CEPR Discussion Papers 4522, C.E.P.R. Discussion Papers.
    18. Julio J. Rotemberg, 2003. "Stochastic Technical Progress, Smooth Trends, and Nearly Distinct Business Cycles," American Economic Review, American Economic Association, vol. 93(5), pages 1543-1559, December.
    19. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    20. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    21. Campbell, John Y., 1994. "Inspecting the mechanism: An analytical approach to the stochastic growth model," Journal of Monetary Economics, Elsevier, vol. 33(3), pages 463-506, June.
    22. Faust, Jon & Leeper, Eric M, 1997. "When Do Long-Run Identifying Restrictions Give Reliable Results?," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 345-353, July.
    23. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    24. Cooley, Thomas F. & Dwyer, Mark, 1998. "Business cycle analysis without much theory A look at structural VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 57-88.
    25. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
    26. Warne, A., 1993. "A Common Trends Model: Identification, Estimation and Inference," Papers 555, Stockholm - International Economic Studies.
    27. Neville Francis & Valerie A. Ramey, 2002. "Is the Technology-Driven Real Business Cycle Hypothesis Dead?," NBER Working Papers 8726, National Bureau of Economic Research, Inc.
    28. Vlaar, Peter J.G., 2004. "On The Asymptotic Distribution Of Impulse Response Functions With Long-Run Restrictions," Econometric Theory, Cambridge University Press, vol. 20(5), pages 891-903, October.
    29. Marimon, Ramon & Scott, Andrew (ed.), 1999. "Computational Methods for the Study of Dynamic Economies," OUP Catalogue, Oxford University Press, number 9780198294979.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    2. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    3. Francesco Giuli & Massimiliano Tancioni, 2009. "Firm-Specific Capital, Productivity Shocks and Investment Dynamics," Working Papers in Public Economics 120, University of Rome La Sapienza, Department of Economics and Law.
    4. Holly, S. & Petrella, I., 2008. "Factor demand linkages and the business cycle: Interpreting aggregate fluctuations as sectoral fluctuations," Cambridge Working Papers in Economics 0827, Faculty of Economics, University of Cambridge.
    5. Giuli, Francesco & Tancioni, Massimiliano, 2012. "Real rigidities, productivity improvements and investment dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 36(1), pages 100-118.
    6. Francesco Giuli & Massimiliano Tancioni, 2010. "Contractionary Effects of Supply Shocks: Evidence and Theoretical Interpretation," Working Papers in Public Economics 131, University of Rome La Sapienza, Department of Economics and Law.
    7. Neville Francis & Valerie A. Ramey, 2009. "Measures of per Capita Hours and Their Implications for the Technology‐Hours Debate," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(6), pages 1071-1097, September.
    8. Francesco Giuli & Massimiliano Tancioni, 2012. "Prince-setting, monetary policy and the contractionary effects of productivity improvements," Departmental Working Papers of Economics - University 'Roma Tre' 0161, Department of Economics - University Roma Tre.
    9. Giancarlo Corsetti & Luca Dedola & Sylvain Leduc, 2008. "Productivity, External Balance, and Exchange Rates: Evidence on the Transmission Mechanism among G7 Countries," NBER Chapters, in: NBER International Seminar on Macroeconomics 2006, pages 117-194, National Bureau of Economic Research, Inc.
    10. Dufourt, Frederic, 2005. "Demand and productivity components of business cycles: Estimates and implications," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1089-1105, September.
    11. Jordi Gali & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBS Model Fit Postwar U.S. Data?," NBER Working Papers 10636, National Bureau of Economic Research, Inc.
    12. Patrick Fève & Alain Guay, 2010. "Identification of Technology Shocks in Structural Vars," Economic Journal, Royal Economic Society, vol. 120(549), pages 1284-1318, December.
    13. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    14. Francesco Busato & Alessandro Girardi & Amadeo Argentiero, 2005. "Technology and non-technology shocks in a two-sector economy," Economics Working Papers 2005-11, Department of Economics and Business Economics, Aarhus University.
    15. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    16. Dedola, Luca & Neri, Stefano, 2007. "What does a technology shock do? A VAR analysis with model-based sign restrictions," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 512-549, March.
    17. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    18. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2004. "A Critique of Structural VARs Using Real Business Cycle Theory," Levine's Bibliography 122247000000000518, UCLA Department of Economics.
    19. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    20. Ghent, Andra, 2006. "Comparing Models of Macroeconomic Fluctuations: How Big Are the Differences?," MPRA Paper 180, University Library of Munich, Germany.

    More about this item

    Keywords

    RBC; SVAR; SVEC model; cointegration;
    All these keywords.

    JEL classification:

    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ter:wpaper:0066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Di Bartolomeo (email available below). General contact details of provider: http://wp.comunite.it/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.