IDEAS home Printed from https://ideas.repec.org/p/stm/wpaper/66.html
   My bibliography  Save this paper

Option-implied bond spread risk

Author

Listed:
  • Gergely Hudecz
  • Edmund Moshammer
  • Marco Onofri

Abstract

Government bond yield futures and related option contracts contain information on the asymmetry of interest rate risks. We construct probability distributions of market- implied bond yield expectations up to 90 calendar days ahead between January 2018 and December 2023. We derive daily distributions for German, French, and Italian bond yields as well as bivariate distributions using a copula to analyse tail risks in bond spread movement. We confirm options to be useful in predicting bond yields and spreads when benchmarking against backward-looking models. Furthermore, we find tail spread measures to be correlated with stock market volatility, inflation expectations, monetary policy surprises, and global economic conditions. In the period under scrutiny, the correlation between these indicators and the Italian spread tail is stronger than the one with the French measure. While changes in global economic conditions and central bank asset purchases strongly correlate with the Italian spread tail, these are less relevant for the French one.

Suggested Citation

  • Gergely Hudecz & Edmund Moshammer & Marco Onofri, 2024. "Option-implied bond spread risk," Working Papers 66, European Stability Mechanism, revised 25 Nov 2024.
  • Handle: RePEc:stm:wpaper:66
    as

    Download full text from publisher

    File URL: https://www.esm.europa.eu/system/files/document/2024-11/WP%2066.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Michael Bauer & Mikhail Chernov, 2024. "Interest Rate Skewness and Biased Beliefs," Journal of Finance, American Finance Association, vol. 79(1), pages 173-217, February.
    3. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    4. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    5. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    6. Haitao Li & Feng Zhao, 2009. "Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4335-4376, November.
    7. John Y. Campbell & Robert J. Shiller, 1991. "Yield Spreads and Interest Rate Movements: A Bird's Eye View," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 495-514.
    8. Michael D Bauer & Aeimit Lakdawala & Philippe Mueller, 2022. "Market-Based Monetary Policy Uncertainty," The Economic Journal, Royal Economic Society, vol. 132(644), pages 1290-1308.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Refet S. Gürkaynak & Jonathan H. Wright, 2012. "Macroeconomics and the Term Structure," Journal of Economic Literature, American Economic Association, vol. 50(2), pages 331-367, June.
    11. Anna Cieslak & Pavol Povala, 2015. "Expected Returns in Treasury Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 28(10), pages 2859-2901.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Matthieu Bellon & Matthias Gnewuch, 2024. "Dangerous liaisons? Debt supply and convenience yield spillovers in the euro area," Working Papers 63, European Stability Mechanism, revised 06 Nov 2024.
    14. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    15. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    16. Banz, Rolf W & Miller, Merton H, 1978. "Prices for State-contingent Claims: Some Estimates and Applications," The Journal of Business, University of Chicago Press, vol. 51(4), pages 653-672, October.
    17. Josep Puigvert-Gutiérrez & Rupert Vincent-Humphreys, 2012. "A Quantitative Mirror on the Euribor Market Using Implied Probability Density Functions," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 2(1), pages 1-31, June.
    18. Jaroslav Baran & Jan Voříšek, 2020. "Volatility indices and implied uncertainty measures of European government bond futures," Working Papers 43, European Stability Mechanism.
    19. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
    20. Edoardo Berton & Lorenzo Mercuri, 2021. "An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model," Papers 2112.11968, arXiv.org, revised Feb 2023.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Liao, Wen Ju & Sung, Hao-Chang, 2020. "Implied risk aversion and pricing kernel in the FTSE 100 index," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    3. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    4. Li, Yifan & Nolte, Ingmar & Pham, Manh Cuong, 2024. "Parametric risk-neutral density estimation via finite lognormal-Weibull mixtures," Journal of Econometrics, Elsevier, vol. 241(2).
    5. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    6. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    7. Maria Kyriacou & Jose Olmo & Marius Strittmatter, 2021. "Optimal portfolio allocation using option‐implied information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 266-285, February.
    8. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    9. Bahadursingh, Roman, 2024. "Portfolio Management Using the Complex Wishart Distribution," Thesis Commons ma2hx_v1, Center for Open Science.
    10. Carole Bernard & Oleg Bondarenko & Steven Vanduffel, 2021. "A model-free approach to multivariate option pricing," Review of Derivatives Research, Springer, vol. 24(2), pages 135-155, July.
    11. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Yoshino, Joe Akira, 2003. "Market Risk and Volatility in the Brazilian Stock Market," Journal of Applied Economics, Universidad del CEMA, vol. 6(2), pages 1-19, November.
    14. Detlefsen, Kai & Härdle, Wolfgang Karl & Moro, Rouslan A., 2007. "Empirical pricing kernels and investor preferences," SFB 649 Discussion Papers 2007-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    16. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    17. repec:wyi:journl:002108 is not listed on IDEAS
    18. Jianlei Han & Martina Linnenluecke & Zhangxin Liu & Zheyao Pan & Tom Smith, 2019. "A general equilibrium approach to pricing volatility risk," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
    19. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    20. Darsinos, T. & Satchell, S.E., 2001. "Bayesian Analysis of the Black-Scholes Option Price," Cambridge Working Papers in Economics 0102, Faculty of Economics, University of Cambridge.
    21. David Edelman & Thomas Gillespie, 2000. "The Stochastically Subordinated Poisson Normal Process for Modelling Financial Assets," Annals of Operations Research, Springer, vol. 100(1), pages 133-164, December.

    More about this item

    Keywords

    Financial market; sovereign bond yield; risk premium; euro area; option contract; risk-neutral distribution; probability density function; copula model;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:stm:wpaper:66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Karol SISKIND (email available below). General contact details of provider: https://edirc.repec.org/data/efseulu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.