IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2008-09.html
   My bibliography  Save this paper

Nonfundamental Representations of the Relation between Technology Shocks and Hours Worked

Author

Listed:
  • Matteo Barigozzi
  • Marco Capasso

Abstract

Estimating the response of hours worked to technology shocks is often considered as a crucial step for evaluating the applicability of macroeconomic models to reality. In particular, Galí [1999] has considered the conditional correlation between employment and productivity as a key tool for building an empirical evaluation of Real Business Cycle theories and New-Keynesian models. Impulse-response functions are often identified by means of Structural Vector AutoRegressive models. However, a structural Moving Average model of the economy cannot be estimated by VAR techniques whenever the agents' information space is larger than the econometrician's one, that is when we face a problem of nonfundamentalness. We consider how factor models can be seen as an alternative to VAR for assessing the validity of an economic model without having to deal with the problem of nonfundamentalness. We apply this method to the well known business cycle model by Galí [1999], which originally was estimated using a VAR, and retrieve alternative nonfundamental representations of the relation between technology shocks and hours worked. Such representations always yield a positive correlation between productivity and hours worked when conditioning on a technology shock. This result is more robust than the results by Christiano et al. [2004], because it is independent of the transformation used for hours worked and moreover is perfectly consistent with the unconditional correlation observed between the common components of the variables considered.

Suggested Citation

  • Matteo Barigozzi & Marco Capasso, 2008. "Nonfundamental Representations of the Relation between Technology Shocks and Hours Worked," LEM Papers Series 2008/09, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2008/09
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2008-09.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    2. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2004. "The Response of Hours to a Technology Shock: Evidence Based on Direct Measures of Technology," Journal of the European Economic Association, MIT Press, vol. 2(2-3), pages 381-395, 04/05.
    3. Hansen, Lars Peter & Sargent, Thomas J., 1980. "Formulating and estimating dynamic linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 7-46, May.
    4. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224, National Bureau of Economic Research, Inc.
    5. Jordi Gali, 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?," American Economic Review, American Economic Association, vol. 89(1), pages 249-271, March.
    6. Lippi, Marco & Reichlin, Lucrezia, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(3), pages 644-652, June.
    7. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    8. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    9. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    10. Gamber, Edward N & Joutz, Frederick L, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(5), pages 1387-1393, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2007. "A Review of Nonfundamentalness and Identification in Structural VAR Models," LEM Papers Series 2007/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    3. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    4. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    5. Domenico Giannone & Lucrezia Reichlin, 2005. "Does information help recovering fundamental structural shocks from past observations?," Macroeconomics 0511017, University Library of Munich, Germany.
    6. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    7. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    8. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    9. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2013. "The common component of firm growth," Structural Change and Economic Dynamics, Elsevier, vol. 26(C), pages 73-82.
    10. Luca Gambetti, 2010. "Fiscal Policy, Foresight and the Trade Balance in the U.S," UFAE and IAE Working Papers 852.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    11. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    12. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    13. Alain Kabundi & Francisco Nadal De Simone, 2011. "France in the global economy: a structural approximate dynamic factor model analysis," Empirical Economics, Springer, vol. 41(2), pages 311-342, October.
    14. Luca Sala & Luca Gambetti & Mario Forni, 2016. "VAR Information and the Empirical Validation of DSGE Models," 2016 Meeting Papers 260, Society for Economic Dynamics.
    15. Danthine, Jean-Pierre & Kurmann, André, 2010. "The business cycle implications of reciprocity in labor relations," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 837-850, October.
    16. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    17. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    18. Mario Forni & Luca Gambetti, 2010. "Fiscal Foresight and the Effects of Government Spending," UFAE and IAE Working Papers 851.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    19. Bin Chen & Jinho Choi & Juan Carlos Escanciano, 2017. "Testing for fundamental vector moving average representations," Quantitative Economics, Econometric Society, vol. 8(1), pages 149-180, March.
    20. Mario Forni & Luca Gambetti, 2010. "Macroeconomic Shocks and the Business Cycle: Evidence from a Structural Factor Model," Center for Economic Research (RECent) 040, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".

    More about this item

    Keywords

    technology; hours worked; factor models;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2008/09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.