IDEAS home Printed from https://ideas.repec.org/p/smu/ecowpa/1204.html
   My bibliography  Save this paper

Optimal consumption under uncertainty, liquidity constraints, and bounded rationality

Author

Listed:

Abstract

I study how boundedly rational agents can learn the solution to an infinite horizon optimal consumption problem under uncertainty and liquidity constraints. I present conditions for the existence of an optimal linear consumption rule and characterize it. Additionally, I use an empirically plausible theory of learning to generate a class of adaptive learning algorithms that converges to the optimal rule. This provides an adaptive and boundedly rational foundation to neoclassical consumption theory.

Suggested Citation

  • Ömer Özak, 2012. "Optimal consumption under uncertainty, liquidity constraints, and bounded rationality," Departmental Working Papers 1204, Southern Methodist University, Department of Economics.
  • Handle: RePEc:smu:ecowpa:1204
    as

    Download full text from publisher

    File URL: https://ftp1.economics.smu.edu/WorkingPapers/2012/OZAK/OZAK-2012-04.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Allen, Todd W. & Carroll, Christopher D., 2001. "Individual Learning About Consumption," Macroeconomic Dynamics, Cambridge University Press, vol. 5(02), pages 255-271, April.
    3. Christopher D. Carroll, 2004. "Theoretical Foundations of Buffer Stock Saving," Economics Working Paper Archive 517, The Johns Hopkins University,Department of Economics.
    4. Xavier Gabaix, 2014. "A Sparsity-Based Model of Bounded Rationality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1661-1710.
    5. Loomes, Graham & Sugden, Robert, 1982. "Regret Theory: An Alternative Theory of Rational Choice under Uncertainty," Economic Journal, Royal Economic Society, vol. 92(368), pages 805-824, December.
    6. Selten, Reinhard & Stoecker, Rolf, 1986. "End behavior in sequences of finite Prisoner's Dilemma supergames A learning theory approach," Journal of Economic Behavior & Organization, Elsevier, vol. 7(1), pages 47-70, March.
    7. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    8. Alexander L. Brown & Zhikang Eric Chua & Colin F. Camerer, 2009. "Learning and Visceral Temptation in Dynamic Saving Experiments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(1), pages 197-231.
    9. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    10. Sargent, Thomas J., 1993. "Bounded Rationality in Macroeconomics: The Arne Ryde Memorial Lectures," OUP Catalogue, Oxford University Press, number 9780198288695.
    11. Christopher D. Carroll, 2001. "A Theory of the Consumption Function, with and without Liquidity Constraints," Journal of Economic Perspectives, American Economic Association, vol. 15(3), pages 23-45, Summer.
    12. Harald Uhlig & Martin Lettau, 1999. "Rules of Thumb versus Dynamic Programming," American Economic Review, American Economic Association, vol. 89(1), pages 148-174, March.
    13. Manuel Santos & John Rust, "undated". "Convergence Properties of Policy Iteration," Working Papers 2133377, Department of Economics, W. P. Carey School of Business, Arizona State University.
    14. Martin L. Puterman & Shelby L. Brumelle, 1979. "On the Convergence of Policy Iteration in Stationary Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 60-69, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasiou, Dimitris & Ftiti, Zied & Louhichi, Waël & Tsouknidis, Dimitris, 2023. "Household deposits and consumer sentiment expectations: Evidence from Eurozone," Journal of International Money and Finance, Elsevier, vol. 131(C).
    2. Howitt, Peter & Özak, Ömer, 2014. "Adaptive consumption behavior," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 37-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salle, Isabelle & Seppecher, Pascal, 2016. "Social Learning About Consumption," Macroeconomic Dynamics, Cambridge University Press, vol. 20(7), pages 1795-1825, October.
    2. Howitt, Peter & Özak, Ömer, 2014. "Adaptive consumption behavior," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 37-61.
    3. Meissner, Thomas & Rostam-Afschar, Davud, 2017. "Learning Ricardian Equivalence," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 273-288.
    4. Jean-François Laslier & Bernard Walliser, 2015. "Stubborn learning," Theory and Decision, Springer, vol. 79(1), pages 51-93, July.
    5. Meissner, Thomas & Rostam-Afschar, Davud, 2014. "Do tax cuts Increase consumption? An experimental test of Ricardian Equivalence," SFB 649 Discussion Papers 2014-062, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    7. Tassos Patokos, 2014. "Introducing Disappointment Dynamics and Comparing Behaviors in Evolutionary Games: Some Simulation Results," Games, MDPI, vol. 5(1), pages 1-25, January.
    8. Arthur Charpentier & Romuald Elie & Carl Remlinger, 2020. "Reinforcement Learning in Economics and Finance," Papers 2003.10014, arXiv.org.
    9. V. P. Crawford, 2014. "Boundedly rational versus optimization-based models of strategic thinking and learning in games," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    10. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    11. Alexander L. Brown & Zhikang Eric Chua & Colin F. Camerer, 2009. "Learning and Visceral Temptation in Dynamic Saving Experiments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(1), pages 197-231.
    12. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    13. DeJong, D.V. & Blume, A. & Neumann, G., 1998. "Learning in Sender-Receiver Games," Other publications TiSEM 4a8b4f46-f30b-4ad2-bb0c-1, Tilburg University, School of Economics and Management.
    14. Jehiel, Philippe, 2005. "Analogy-based expectation equilibrium," Journal of Economic Theory, Elsevier, vol. 123(2), pages 81-104, August.
    15. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    16. Mari Rege, 2000. "Networking Strategy: Cooperate Today in Order to Meet a Cooperator Tomorrow," Discussion Papers 282, Statistics Norway, Research Department.
    17. Mengel, Friederike, 2014. "Learning by (limited) forward looking players," Journal of Economic Behavior & Organization, Elsevier, vol. 108(C), pages 59-77.
    18. Giovanna Devetag, 2000. "Coordination in "Critical Mass" Games: An Experimental Study," LEM Papers Series 2000/03, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    19. Mohlin, Erik & Östling, Robert & Wang, Joseph Tao-yi, 2020. "Learning by similarity-weighted imitation in winner-takes-all games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 225-245.
    20. Emerson Melo, 2021. "Learning in Random Utility Models Via Online Decision Problems," Papers 2112.10993, arXiv.org, revised Aug 2022.

    More about this item

    Keywords

    Adaptive learning models; bounded rationality; dynamic programming; consumption function; behavioral economics; liquidity constraint; Markov process;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • D9 - Microeconomics - - Micro-Based Behavioral Economics
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:smu:ecowpa:1204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ömer Özak (email available below). General contact details of provider: http://www.smu.edu/economics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.