IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/250.html
   My bibliography  Save this paper

Do so-called multivariate filters have better revision properties? An empirical analysis

Author

Listed:
  • L Christopher Plantier
  • Ozer Karagedikli

Abstract

The output gap plays a crucial role in thinking and actions of many central banks but real time measurements undergo substantial revisions as more data become available (Orphanides (2001), Orphanides and van Norden (forthcoming)). Some central banks augment, such as the Bank of Canada and the Reserve Bank of New Zealand, the Hodrick and Prescott (1997) filter with conditioning structural information to mitigate the impact of revisions to the output gap estimates. In this paper, we use a state space Kalman filter framework to examine whether the augmented (so-called “multivariate filters†) achieve this objective. We find that the multivariate filters are no better than the Hodrick-Prescott filter for real-time NZ data. The addition of structural equations increase the number of signal equations, but at the same time adds more unobserved trend/equilibrium variables to the system. We find that how these additional trends/equilibrium values are treated matters a lot, and they increase the uncertainty around the estimates. In addition, the revisions from these models can be as large as a univariate Hodrick-Prescott filter.

Suggested Citation

  • L Christopher Plantier & Ozer Karagedikli, 2005. "Do so-called multivariate filters have better revision properties? An empirical analysis," Computing in Economics and Finance 2005 250, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:250
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.21881.1107137722.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    2. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    3. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    4. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    5. Laurence Boone, 2000. "Comparing Semi-Structural Methods to Estimate Unobserved Variables: The HPMV and Kalman Filters Approaches," OECD Economics Department Working Papers 240, OECD Publishing.
    6. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    7. Mr. Jaromir Benes & Mr. Papa M N'Diaye, 2004. "A Multivariate Filter for Measuring Potential Output and the NAIRU Application to the Czech Republic," IMF Working Papers 2004/045, International Monetary Fund.
    8. Tim Robinson & Andrew Stone & Marileze van Zyl, 2003. "The Real-time Forecasting Performance of Phillips Curves," RBA Research Discussion Papers rdp2003-12, Reserve Bank of Australia.
    9. Cayen, Jean-Philippe & van Norden, Simon, 2005. "The reliability of Canadian output-gap estimates," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 373-393, December.
    10. Kuttner, Kenneth N, 1994. "Estimating Potential Output as a Latent Variable," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 361-368, July.
    11. Razzak, W., 1997. "The Hodrick-Prescott technique: A smoother versus a filter: An application to New Zealand GDP," Economics Letters, Elsevier, vol. 57(2), pages 163-168, December.
    12. Harvey, A C, 1985. "Trends and Cycles in Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 216-227, June.
    13. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 797-814.
    14. Alasdair Scott, 2000. "A multivariate unobserved components model of cyclical activity," Reserve Bank of New Zealand Discussion Paper Series DP2000/04, Reserve Bank of New Zealand.
    15. Paul Conway & Ben Hunt, 1997. "Estimating potential output: a semi-structural approach," Reserve Bank of New Zealand Discussion Paper Series G97/9, Reserve Bank of New Zealand.
    16. Michael Graff, 2004. "Estimates of the output gap in real time: how well have we been doing?," Reserve Bank of New Zealand Discussion Paper Series DP 2004/04, Reserve Bank of New Zealand.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hjelm, Göran & Jönsson, Kristian, 2010. "In Search of a Method for Measuring the Output Gap of the Swedish Economy," Working Papers 115, National Institute of Economic Research.
    2. Aaron Drew, 2007. "New Zealand's productivity performance and prospects," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 70, March.
    3. Kam Leong Szeto, 2013. "Estimating New Zealand’s Output Gap Using a Small Macro Model," Treasury Working Paper Series 13/18, New Zealand Treasury.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cayen, Jean-Philippe & van Norden, Simon, 2005. "The reliability of Canadian output-gap estimates," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 373-393, December.
    2. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    3. Chalmovianský, Jakub & Němec, Daniel, 2022. "Assessing uncertainty of output gap estimates: Evidence from Visegrad countries," Economic Modelling, Elsevier, vol. 116(C).
    4. Bernhardsen, Tom & Eitrheim, Oyvind & Jore, Anne Sofie & Roisland, Oistein, 2005. "Real-time data for Norway: Challenges for monetary policy," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 333-349, December.
    5. Xueting Yu & Yuhan Zhu & Guangming Lv, 2020. "Analysis of the Impact of China’s GDP Data Revision on Monetary Policy from the Perspective of Uncertainty," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(6), pages 1251-1274, May.
    6. S. Adnan H. A. S. Bukhari & Safdar Ullah Khan, 2008. "Estimating Output Gap for Pakistan Economy: Structural and Statistical Approaches," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 4, pages 31-60.
    7. Odile Chagny & Jörg Döpke, 2001. "Measures of the Output Gap in the Euro-Zone: An Empirical Assessment of Selected Methods," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 70(3), pages 310-332.
    8. Loukoianova, E. & Vahey, S.P. & Elizabeth C. Wakerly, 2002. "A Real Time Tax Smoothing Based Fiscal Policy Rule," Cambridge Working Papers in Economics 0235, Faculty of Economics, University of Cambridge.
    9. Michael Graff, 2004. "Estimates of the output gap in real time: how well have we been doing?," Reserve Bank of New Zealand Discussion Paper Series DP 2004/04, Reserve Bank of New Zealand.
    10. Nelson, Charles R., 2008. "The Beveridge-Nelson decomposition in retrospect and prospect," Journal of Econometrics, Elsevier, vol. 146(2), pages 202-206, October.
    11. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    12. Jean-Philippe Cayen & Simon van Norden, 2002. "La fiabilité des estimations de l'écart de production au Canada," Staff Working Papers 02-10, Bank of Canada.
    13. Tom Bernhardsen & ØYvind Eitrheim, 2005. "Real-time data for Norway: Output gap revisions and challenges for monetary policy," Computing in Economics and Finance 2005 274, Society for Computational Economics.
    14. Andreas Billmeier, 2006. "Measuring a Roller Coaster: Evidence on the Finnish Output Gap," Finnish Economic Papers, Finnish Economic Association, vol. 19(2), pages 69-83, Autumn.
    15. Clark, Todd E. & Kozicki, Sharon, 2005. "Estimating equilibrium real interest rates in real time," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 395-413, December.
    16. Marian Vavra, 2016. "Testing the Validity of Assumptions of UC-ARIMA Models for Trend-Cycle Decompositions," Working and Discussion Papers WP 4/2016, Research Department, National Bank of Slovakia.
    17. Blonigen, Bruce A. & Piger, Jeremy & Sly, Nicholas, 2014. "Comovement in GDP trends and cycles among trading partners," Journal of International Economics, Elsevier, vol. 94(2), pages 239-247.
    18. Amador-Torres, J. Sebastián, 2017. "Finance-neutral potential output: An evaluation in an emerging market monetary policy context," Economic Systems, Elsevier, vol. 41(3), pages 389-407.
    19. Kaloyan Ganev, 2004. "Statistical estimates of the deviations from the macroeconomic potential. An application to the economy of Bulgaria," Working paper series 12004en, Agency for Economic Analysis and Forecasting.
    20. Gian Luigi Mazzi & Frédéric Reynès & Matthieu Lemoine & Paola Veroni, 2008. "Real Time Estimation of Potential Output and Output Gap for the Euro-Area : Comparing Production Function with Unobserved Components and SVAR Approaches," SciencePo Working papers Main hal-01027422, HAL.

    More about this item

    Keywords

    output gap; real time; multivariate filters;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.