IDEAS home Printed from https://ideas.repec.org/p/oec/ecoaaa/240-en.html
   My bibliography  Save this paper

Comparing Semi-Structural Methods to Estimate Unobserved Variables: The HPMV and Kalman Filters Approaches

Author

Listed:
  • Laurence Boone

Abstract

Economists often seek to estimate unobserved variables, representing “equilibrium” or “expected” values of economic variables, as benchmarks against which observed, realised values of these variables may be evaluated. Such comparisons are often used as economic policy indicators, for example the output gap, as measured by the ratio of actual to potential GDP, is commonly used as a measure of excess demand in assessing inflation pressures. To estimate these unobserved variables, a popular approach is the so-called semi-structural approach which includes: the Hodrick Prescott multivariate filter (developed by Laxton and Tetlow, 1992) and the Kalman filter (see, among others Harvey, 1992 and Cuthberson et al., 1992). This paper shows that the two approaches are closely linked, and specifically, it explains how to reproduce theHodrick Prescott multivariate filter using the Kalman filter. Being able to do so has at least two possible advantages. First, while the traditional HPMV filter ... Les économistes cherchent fréquemment à estimer des variables non observables, utilisées comme valeur d’équilibre ou de référence. La différence entre cette valeur estimée et la valeur observée est ensuite un indicateur des tensions économiques : par exemple, l’écart de PIB, mesuré par la différence entre le PIB potentiel et le PIB courant, est souvent utilisé pour évaluer les pressions inflationnistes. Une approche fréquemment utilisée pour estimer des variables inobservées est l’approche dite semi-structurelle, qui englobe notamment le filtre de Hodrick Prescott multivarié (développé par Laxton et Tetlwo 1992) et le filtre de Kalman (voir, entre autres, Harvey 1992 et Cuthberson et al. 1992). Ce document présente le lien entre ces deux filtres et explique comment reproduire le filtre HP multivarié avec un filtre de Kalman. L’intérêt de cette démarche est double. Tout d’abord, alors qu’il n’est pas possible de produire une mesure de confiance d’un estimateur HP multivarié, le ...

Suggested Citation

  • Laurence Boone, 2000. "Comparing Semi-Structural Methods to Estimate Unobserved Variables: The HPMV and Kalman Filters Approaches," OECD Economics Department Working Papers 240, OECD Publishing.
  • Handle: RePEc:oec:ecoaaa:240-en
    DOI: 10.1787/112875725526
    as

    Download full text from publisher

    File URL: https://doi.org/10.1787/112875725526
    Download Restriction: no

    File URL: https://libkey.io/10.1787/112875725526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Kalman filter; NAIRU; standard errors; unobserved component models;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:ecoaaa:240-en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/edoecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.