IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2008-053.html
   My bibliography  Save this paper

Yield curve factors, term structure volatility, and bond risk premia

Author

Listed:
  • Hautsch, Nikolaus
  • Ou, Yangguoyi

Abstract

We introduce a Nelson-Siegel type interest rate term structure model with the underlying yield factors following autoregressive processes revealing time-varying stochastic volatility. The factor volatilities capture risk inherent to the term struc- ture and are associated with the time-varying uncertainty of the yield curve's level, slope and curvature. Estimating the model based on U.S. government bond yields applying Markov chain Monte Carlo techniques we find that the yield factors and factor volatilities follow highly persistent processes. Using the extracted factors to explain one-year-ahead bond excess returns we observe that the slope and cur- vature yield factors contain the same explanatory power as the return-forecasting factor recently proposed by Cochrane and Piazzesi (2005). Moreover, we identify slope and curvature risk as important additional determinants of future excess returns. Finally, we illustrate that the yield and volatility factors are closely con- nected to variables reflecting macroeconomic activity, inflation, monetary policy and employment growth. It is shown that the extracted yield curve components have long-term prediction power for macroeconomic fundamentals.

Suggested Citation

  • Hautsch, Nikolaus & Ou, Yangguoyi, 2008. "Yield curve factors, term structure volatility, and bond risk premia," SFB 649 Discussion Papers 2008-053, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2008-053
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25296/1/584571739.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Hodrick, Robert J, 1980. "Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis," Journal of Political Economy, University of Chicago Press, vol. 88(5), pages 829-853, October.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    4. Francis X. Diebold & Monika Piazzesi & Glenn D. Rudebusch, 2005. "Modeling Bond Yields in Finance and Macroeconomics," American Economic Review, American Economic Association, vol. 95(2), pages 415-420, May.
    5. Engle, Robert F & Ng, Victor K, 1993. "Time-Varying Volatility and the Dynamic Behavior of the Term Structure," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 25(3), pages 336-349, August.
    6. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    7. Andrew C. Harvey, 1990. "The Econometric Analysis of Time Series, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026208189x, April.
    8. John Y. Campbell & Robert J. Shiller, 1991. "Yield Spreads and Interest Rate Movements: A Bird's Eye View," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 495-514.
    9. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    10. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    11. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    12. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
    13. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    14. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    15. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    16. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    17. Hull, John & White, Alan, 1990. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(1), pages 87-100, March.
    18. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    19. Dai, Qiang & Singleton, Kenneth J., 2002. "Expectation puzzles, time-varying risk premia, and affine models of the term structure," Journal of Financial Economics, Elsevier, vol. 63(3), pages 415-441, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Cieslak & Pavol Povala, 2016. "Information in the Term Structure of Yield Curve Volatility," Journal of Finance, American Finance Association, vol. 71(3), pages 1393-1436, June.
    2. Härdle, Wolfgang Karl & Majer, Piotr, 2012. "Yield curve modeling and forecasting using semiparametric factor dynamics," SFB 649 Discussion Papers 2012-048, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    4. repec:hum:wpaper:sfb649dp2010-039 is not listed on IDEAS
    5. Song, Song & Härdle, Wolfgang Karl & Ritov, Ya'acov, 2010. "High dimensional nonstationary time series modelling with generalized dynamic semiparametric factor model," SFB 649 Discussion Papers 2010-039, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Nath, Golaka, 2012. "Estimating term structure changes using principal component analysis in Indian sovereign bond market," MPRA Paper 39229, University Library of Munich, Germany.
    7. repec:hum:wpaper:sfb649dp2012-048 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hautsch, Nikolaus & Ou, Yangguoyi, 2012. "Analyzing interest rate risk: Stochastic volatility in the term structure of government bond yields," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2988-3007.
    2. repec:hum:wpaper:sfb649dp2008-053 is not listed on IDEAS
    3. Guidolin, Massimo & Thornton, Daniel L., 2018. "Predictions of short-term rates and the expectations hypothesis," International Journal of Forecasting, Elsevier, vol. 34(4), pages 636-664.
    4. Yung, Julieta, 2021. "Can interest rate factors explain exchange rate fluctuations?," Journal of Empirical Finance, Elsevier, vol. 61(C), pages 34-56.
    5. Christensen, Bent Jesper & van der Wel, Michel, 2019. "An asset pricing approach to testing general term structure models," Journal of Financial Economics, Elsevier, vol. 134(1), pages 165-191.
    6. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    7. Caldeira, João F. & Laurini, Márcio P. & Portugal, Marcelo S., 2010. "Bayesian Inference Applied to Dynamic Nelson-Siegel Model with Stochastic Volatility," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(1), October.
    8. Marco Shinobu Matsumura & Ajax Reynaldo Bello Moreira & José Valentim Machado Vicente, 2010. "Forecasting the Yield Curve with Linear Factor Models," Working Papers Series 223, Central Bank of Brazil, Research Department.
    9. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    10. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    11. Luis Ceballos & Alberto Naudon & Damián Romero, 2016. "Nominal term structure and term premia: evidence from Chile," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2721-2735, June.
    12. Siem Jan Koopman & Max I.P. Mallee & Michel van der Wel, 2007. "Analyzing the Term Structure of Interest Rates using the Dynamic Nelson-Siegel Model with Time-Varying Parameters," Tinbergen Institute Discussion Papers 07-095/4, Tinbergen Institute.
    13. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    14. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    15. Doshi, Hitesh & Jacobs, Kris & Liu, Rui, 2018. "Macroeconomic determinants of the term structure: Long-run and short-run dynamics," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 99-122.
    16. Zeno Rotondi, 2006. "The Macroeconomy and the Yield Curve: A Review of the Literature with Some New Evidence," Giornale degli Economisti, GDE (Giornale degli Economisti e Annali di Economia), Bocconi University, vol. 65(2), pages 193-224, November.
    17. Christensen, Bent Jesper & Kjær, Mads Markvart & Veliyev, Bezirgen, 2023. "The incremental information in the yield curve about future interest rate risk," Journal of Banking & Finance, Elsevier, vol. 155(C).
    18. Peter Feldhütter & Christian Heyerdahl-Larsen & Philipp Illeditsch, 2018. "Risk Premia and Volatilities in a Nonlinear Term Structure Model [Quadratic term structure models: theory and evidence]," Review of Finance, European Finance Association, vol. 22(1), pages 337-380.
    19. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2010. "Forecasting Government Bond Yields with Large Bayesian VARs," Working Papers 662, Queen Mary University of London, School of Economics and Finance.
    20. Leo Krippner, 2009. "A theoretical foundation for the Nelson and Siegel class of yield curve models," Reserve Bank of New Zealand Discussion Paper Series DP2009/10, Reserve Bank of New Zealand.
    21. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.

    More about this item

    Keywords

    Term structure modelling; yield curve risk; stochastic volatility; factor models; macroeconomic fundamentals;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2008-053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.