IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/24-19.html
   My bibliography  Save this paper

Estimation Under Ambiguity

Author

Listed:
  • Raffaella Giacomini

    (Institute for Fiscal Studies and University College London)

  • Toru Kitagawa

    (Institute for Fiscal Studies and University College London)

  • Harald Uhlig

    (Institute for Fiscal Studies and University of Chicago)

Abstract

To perform Bayesian analysis of a partially identified structural model, two distinct approaches exist: standard Bayesian inference, which assumes a single prior for the structural parameters, including the non-identified ones; and multiple-prior Bayesian inference, which assumes full ambiguity for the non-identified parameters. The prior inputs considered by these two extreme approaches can often be a poor representation of the researcher’s prior knowledge in practice. This paper fills the large gap between the two approaches by proposing a multiple-prior Bayesian analysis that can simultaneously incorporate a probabilistic belief for the non-identified parameters and a concern about misspecification of this belief. Our proposal introduces a benchmark prior representing the researcher’s partially credible probabilistic belief for non-identified parameters, and a set of priors formed in its Kullback-Leibler (KL) neighborhood, whose radius controls the “degree of ambiguity.” We obtain point estimators and optimal decisions involving non-identified parameters by solving a conditional gamma-minimax problem, which we show is analytically tractable and easy to solve numerically. We derive the remarkably simple analytical properties of the proposed procedure in the limiting situations where the radius of the KL neighborhood and/or the sample size are large. Our procedure can also be used to perform global sensitivity analysis.

Suggested Citation

  • Raffaella Giacomini & Toru Kitagawa & Harald Uhlig, 2019. "Estimation Under Ambiguity," CeMMAP working papers CWP24/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:24/19
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/CW2419_Estimation_Under_Ambiguity.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    2. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Uncertainty," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 5, pages 145-154, World Scientific Publishing Co. Pte. Ltd..
    3. St'ephane Bonhomme & Martin Weidner, 2018. "Minimizing Sensitivity to Model Misspecification," Papers 1807.02161, arXiv.org, revised Oct 2021.
    4. Pietro Ortoleva, 2012. "Modeling the Change of Paradigm: Non-Bayesian Reactions to Unexpected News," American Economic Review, American Economic Association, vol. 102(6), pages 2410-2436, October.
    5. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    6. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    7. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    8. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    9. Cesaltina Pacheco Pires, 2002. "A Rule For Updating Ambiguous Beliefs," Theory and Decision, Springer, vol. 53(2), pages 137-152, September.
    10. Leamer, Edward E, 1981. "Is It a Demand Curve, or Is It a Supply Curve? Partial Identification through Inequality Constraints," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 319-327, August.
    11. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    12. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    13. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    14. A. Norets & X. Tang, 2014. "Semiparametric Inference in Dynamic Binary Choice Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1229-1262.
    15. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    16. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    17. Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
    18. Andriy Norets & Xun Tang, 2010. "Semiparametric Inference in Dynamic Binary Choice Models, Second Version," PIER Working Paper Archive 12-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Apr 2012.
    19. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    20. Poirier, Dale J., 1998. "Revising Beliefs In Nonidentified Models," Econometric Theory, Cambridge University Press, vol. 14(4), pages 483-509, August.
    21. Hyungsik Roger Moon & Frank Schorfheide, 2012. "Bayesian and Frequentist Inference in Partially Identified Models," Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
    22. Gary Chamberlain, 2000. "Econometric applications of maxmin expected utility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 625-644.
    23. Bresnahan, Timothy F. & Reiss, Peter C., 1991. "Empirical models of discrete games," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 57-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    2. Giacomini, Raffaella & Kitagawa, Toru & Read, Matthew, 2022. "Robust Bayesian inference in proxy SVARs," Journal of Econometrics, Elsevier, vol. 228(1), pages 107-126.
    3. Jiaming Mao & Zhesheng Zheng, 2020. "Structural Regularization," Papers 2004.12601, arXiv.org, revised Jun 2020.
    4. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," Papers 2011.03153, arXiv.org, revised Dec 2020.
    5. Timothy B. Armstrong & Michal Koles'ar & Mikkel Plagborg-M{o}ller, 2020. "Robust Empirical Bayes Confidence Intervals," Papers 2004.03448, arXiv.org, revised May 2022.
    6. Timothy Christensen & Benjamin Connault, 2023. "Counterfactual Sensitivity and Robustness," Econometrica, Econometric Society, vol. 91(1), pages 263-298, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2022. "Uncertain identification," Quantitative Economics, Econometric Society, vol. 13(1), pages 95-123, January.
    2. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    3. Emanuele Bacchiocchi & Toru Kitagawa, 2020. "Locally- but not globally-identified SVARs," CeMMAP working papers CWP40/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," Papers 2011.03153, arXiv.org, revised Dec 2020.
    5. Giacomini, Raffaella & Kitagawa, Toru & Read, Matthew, 2022. "Robust Bayesian inference in proxy SVARs," Journal of Econometrics, Elsevier, vol. 228(1), pages 107-126.
    6. Timothy Christensen & Benjamin Connault, 2023. "Counterfactual Sensitivity and Robustness," Econometrica, Econometric Society, vol. 91(1), pages 263-298, January.
    7. Jean-Pierre Florens & Anna Simoni, 2021. "Revisiting Identification Concepts in Bayesian Analysis," Annals of Economics and Statistics, GENES, issue 144, pages 1-38.
    8. Matthew Read, 2023. "Estimating the Effects of Monetary Policy in Australia Using Sign‐restricted Structural Vector Autoregressions," The Economic Record, The Economic Society of Australia, vol. 99(326), pages 329-358, September.
    9. Baumeister, Christiane & Hamilton, James D., 2018. "Inference in structural vector autoregressions when the identifying assumptions are not fully believed: Re-evaluating the role of monetary policy in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 48-65.
    10. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Raffaella Giacomini & Toru Kitagawa & Matthew Read, 2021. "Identification and Inference Under Narrative Restrictions," Papers 2102.06456, arXiv.org.
    12. Liao, Yuan & Simoni, Anna, 2019. "Bayesian inference for partially identified smooth convex models," Journal of Econometrics, Elsevier, vol. 211(2), pages 338-360.
    13. Brendan Kline & Elie Tamer, 2024. "Counterfactual Analysis in Empirical Games," Papers 2410.12731, arXiv.org.
    14. Philipp Eisenhauer & Lena Janys & Christopher Walsh & Janós Gabler, 2023. "Structural Models for Policy-Making," CRC TR 224 Discussion Paper Series crctr224_2023_484, University of Bonn and University of Mannheim, Germany.
    15. Matthew Read, 2024. "Sign Restrictions and Supply-demand Decompositions of Inflation," RBA Research Discussion Papers rdp2024-05, Reserve Bank of Australia.
    16. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    17. Montiel Olea, José Luis & Nesbit, James, 2021. "(Machine) learning parameter regions," Journal of Econometrics, Elsevier, vol. 222(1), pages 716-744.
    18. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    19. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust decision-making under risk and ambiguity," Papers 2104.12573, arXiv.org, revised Oct 2021.
    20. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:24/19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.