IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1801.00973.html
   My bibliography  Save this paper

A New Wald Test for Hypothesis Testing Based on MCMC outputs

Author

Listed:
  • Yong Li
  • Xiaobin Liu
  • Jun Yu
  • Tao Zeng

Abstract

In this paper, a new and convenient $\chi^2$ wald test based on MCMC outputs is proposed for hypothesis testing. The new statistic can be explained as MCMC version of Wald test and has several important advantages that make it very convenient in practical applications. First, it is well-defined under improper prior distributions and avoids Jeffrey-Lindley's paradox. Second, it's asymptotic distribution can be proved to follow the $\chi^2$ distribution so that the threshold values can be easily calibrated from this distribution. Third, it's statistical error can be derived using the Markov chain Monte Carlo (MCMC) approach. Fourth, most importantly, it is only based on the posterior MCMC random samples drawn from the posterior distribution. Hence, it is only the by-product of the posterior outputs and very easy to compute. In addition, when the prior information is available, the finite sample theory is derived for the proposed test statistic. At last, the usefulness of the test is illustrated with several applications to latent variable models widely used in economics and finance.

Suggested Citation

  • Yong Li & Xiaobin Liu & Jun Yu & Tao Zeng, 2018. "A New Wald Test for Hypothesis Testing Based on MCMC outputs," Papers 1801.00973, arXiv.org.
  • Handle: RePEc:arx:papers:1801.00973
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1801.00973
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488.
    2. Han C. & Carlin B. P., 2001. "Markov Chain Monte Carlo Methods for Computing Bayes Factors: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1122-1132, September.
    3. Bao, Yong & Ullah, Aman, 2007. "The second-order bias and mean squared error of estimators in time-series models," Journal of Econometrics, Elsevier, vol. 140(2), pages 650-669, October.
    4. Geweke, John & Koop, Gary & van Dijk, Herman (ed.), 2011. "The Oxford Handbook of Bayesian Econometrics," OUP Catalogue, Oxford University Press, number 9780199559084.
    5. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    6. Poirier, Dale J., 1997. "A predictive motivation for loss function specification in parametric hypothesis testing," Economics Letters, Elsevier, vol. 56(1), pages 1-3, September.
    7. José M. Bernardo & Raúl Rueda, 2002. "Bayesian Hypothesis Testing: a Reference Approach," International Statistical Review, International Statistical Institute, vol. 70(3), pages 351-372, December.
    8. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    9. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, April.
    10. Yoichi Miyata, 2004. "Fully Exponential Laplace Approximations Using Asymptotic Modes," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1037-1049, December.
    11. Li, Yong & Zeng, Tao & Yu, Jun, 2014. "A new approach to Bayesian hypothesis testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 602-612.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaobin & Li, Yong & Yu, Jun & Zeng, Tao, 2022. "Posterior-based Wald-type statistics for hypothesis testing," Journal of Econometrics, Elsevier, vol. 230(1), pages 83-113.
    2. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    3. Li, Yong & Zeng, Tao & Yu, Jun, 2014. "A new approach to Bayesian hypothesis testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 602-612.
    4. Yong Li & Jun Yu, 2019. "An Improved Bayesian Unit Root Test in Stochastic Volatility Models," Annals of Economics and Finance, Society for AEF, vol. 20(1), pages 103-122, May.
    5. Doğan, Osman & Taşpınar, Süleyman & Bera, Anil K., 2021. "A Bayesian robust chi-squared test for testing simple hypotheses," Journal of Econometrics, Elsevier, vol. 222(2), pages 933-958.
    6. Jin-Yu Zhang & Zhong-Tian Chen & Yong Li, 2019. "Bayesian Testing for Leverage Effect in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1153-1164, March.
    7. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    8. Zhang, Yonghui & Chen, Zhongtian & Li, Yong, 2017. "Bayesian testing for short term interest rate models," Finance Research Letters, Elsevier, vol. 20(C), pages 146-152.
    9. Chen, Shyh-Wei & Hsu, Chi-Sheng & Xie, Zixong, 2016. "Are there periodically collapsing bubbles in the stock markets? New international evidence," Economic Modelling, Elsevier, vol. 52(PB), pages 442-451.
    10. Rodney W. Strachan & Herman K. Van Dijk, 2013. "Evidence On Features Of A Dsge Business Cycle Model From Bayesian Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 54(1), pages 385-402, February.
    11. Yu, Jun, 2012. "Bias in the estimation of the mean reversion parameter in continuous time models," Journal of Econometrics, Elsevier, vol. 169(1), pages 114-122.
    12. Baruník, Jozef & Ellington, Michael, 2024. "Persistence in financial connectedness and systemic risk," European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
    13. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    14. Yong Bao, 2015. "Should We Demean the Data?," Annals of Economics and Finance, Society for AEF, vol. 16(1), pages 163-171, May.
    15. Aman Ullah & Yong Bao & Ru Zhang, 2014. "Moment Approximation for Unit Root Models with Nonnormal Errors," Working Papers 201401, University of California at Riverside, Department of Economics.
    16. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    17. Yong Li & Zeng Tao & Jun Yu, "undated". "Robust Deviance Information Criterion for Latent Variable Models," Working Papers CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    18. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    19. Kiviet, Jan F. & Phillips, Garry D.A., 2014. "Improved variance estimation of maximum likelihood estimators in stable first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 424-448.
    20. Liu-Evans, Gareth, 2014. "A note on approximating moments of least squares estimators," MPRA Paper 57543, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1801.00973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.