IDEAS home Printed from https://ideas.repec.org/p/ris/nereus/2024_006.html
   My bibliography  Save this paper

Geographical Propagation of the Economic Impacts of the ISIS Conflict in Iraq

Author

Listed:
  • Araujo, Inacio F.

    (Departamento de Economia, Universidade de São Paulo)

  • Donaghy, Kieran P.

    (Department of City and Regional Planning, Cornell University)

  • Haddad, Eduardo A.

    (Departamento de Economia, Universidade de São Paulo)

  • Hewings, Geoffrey J.D.

    (Department of Urban & Regional Planning, University of Illinois Urbana-Champaign)

Abstract

This study develops a methodology to assess the effects of extreme events. This method measures the geographic propagation of indirect impacts of disasters through supply chains. This modeling framework incorporates an inter-regional input-output system to calibrate a computable general equilibrium model. Our methodological approach includes examining the supply and demand constraints caused by the disruptive event. We also model regional resilience through input substitution possibilities. To illustrate the applicability of the methodology, we analyze the higher-order effects of the regional ISIS-created conflict in Iraq between 2014 and 2017. We also extend the general equilibrium model to downscale Iraq’s national economic accounts to the regional level. This strategy projects the post-conflict Iraqi economy at a granular level of spatial aggregation. The model produced for this analysis offers policymakers simulations to identify economic vulnerabilities at the regional and industrial levels and explore alternatives to mitigate the damage caused by extreme events.

Suggested Citation

  • Araujo, Inacio F. & Donaghy, Kieran P. & Haddad, Eduardo A. & Hewings, Geoffrey J.D., 2024. "Geographical Propagation of the Economic Impacts of the ISIS Conflict in Iraq," TD NEREUS 6-2024, Núcleo de Economia Regional e Urbana da Universidade de São Paulo (NEREUS).
  • Handle: RePEc:ris:nereus:2024_006
    as

    Download full text from publisher

    File URL: http://www.usp.br/nereus/wp-content/uploads/TD_NEREUS_06_2024.pdf
    File Function: Full text
    Download Restriction: ris
    ---><---

    References listed on IDEAS

    as
    1. Vasco M Carvalho & Makoto Nirei & Yukiko U Saito & Alireza Tahbaz-Salehi, 2021. "Supply Chain Disruptions: Evidence from the Great East Japan Earthquake," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(2), pages 1255-1321.
    2. Lei Zhou & Zhenhua Chen, 2021. "Are CGE models reliable for disaster impact analyses?," Economic Systems Research, Taylor & Francis Journals, vol. 33(1), pages 20-46, January.
    3. Elco E. Koks & Mark Thissen, 2016. "A Multiregional Impact Assessment Model for disaster analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(4), pages 429-449, October.
    4. Eduardo A. Haddad & Inácio F. Araújo, 2023. "The Interregional Computable General Equilibrium Model for Colombia," Advances in Spatial Science, in: Eduardo A. Haddad & Jaime Bonet & Geoffrey J. D. Hewings (ed.), The Colombian Economy and Its Regional Structural Challenges, chapter 0, pages 161-182, Springer.
    5. Adam Rose & Shu‐Yi Liao, 2005. "Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions," Journal of Regional Science, Wiley Blackwell, vol. 45(1), pages 75-112, February.
    6. Kieran P. Donaghy & Nazmiye Balta-Ozkan & Geoffrey J.D. Hewings, 2007. "Modeling Unexpected Events in Temporally Disaggregated Econometric Input-Output Models of Regional Economies," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 125-145.
    7. Yasuhide Okuyama & Stephanie E. Chang (ed.), 2004. "Modeling Spatial and Economic Impacts of Disasters," Advances in Spatial Science, Springer, number 978-3-540-24787-6, december.
    8. Jun Li & Douglas Crawford‐Brown & Mark Syddall & Dabo Guan, 2013. "Modeling Imbalanced Economic Recovery Following a Natural Disaster Using Input‐Output Analysis," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1908-1923, October.
    9. Yoshio Kajitani & Hirokazu Tatano, 2018. "Applicability of a spatial computable general equilibrium model to assess the short-term economic impact of natural disasters," Economic Systems Research, Taylor & Francis Journals, vol. 30(3), pages 289-312, July.
    10. Dixon, Peter B. & Parmenter, B.R., 1996. "Computable general equilibrium modelling for policy analysis and forecasting," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 1, pages 3-85, Elsevier.
    11. J. A. León & M. Ordaz & E. Haddad & I. F. Araújo, 2022. "Risk caused by the propagation of earthquake losses through the economy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Garber, Gabriel & Haddad, Eduardo, 2012. "Target Fitting and Robustness Analysis in CGE Models," TD NEREUS 4-2012, Núcleo de Economia Regional e Urbana da Universidade de São Paulo (NEREUS).
    13. Wei Xie & Adam Rose & Shantong Li & Jianwu He & Ning Li & Tariq Ali, 2018. "Dynamic Economic Resilience and Economic Recovery from Disasters: A Quantitative Assessment," Risk Analysis, John Wiley & Sons, vol. 38(6), pages 1306-1318, June.
    14. Jan Oosterhaven, 2017. "On the limited usability of the inoperability IO model," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 452-461, July.
    15. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    16. Nancy Lozano-Gracia & Gianfranco Piras & Ana Maria Ibáñez & Geoffrey J. D. Hewings, 2010. "The Journey to Safety: Conflict-Driven Migration Flows in Colombia," International Regional Science Review, , vol. 33(2), pages 157-180, April.
    17. Yasuhide Okuyama, 2007. "Economic Modeling for Disaster Impact Analysis: Past, Present, and Future," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 115-124.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    3. Zhengtao Zhang & Ning Li & Peng Cui & Hong Xu & Yuan Liu & Xi Chen & Jieling Feng, 2019. "How to Integrate Labor Disruption into an Economic Impact Evaluation Model for Postdisaster Recovery Periods," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2443-2456, November.
    4. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    5. Iman Rahimi Aloughareh & Mohsen Ghafory Ashtiany & Kiarash Nasserasadi, 2016. "An Integrated Methodology For Regional Macroeconomic Loss Estimation Of Earthquake: A Case Study Of Tehran," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(04), pages 1-24, September.
    6. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    7. David Mendoza‐Tinoco & Yixin Hu & Zhao Zeng & Konstantinos J. Chalvatzis & Ning Zhang & Albert E. Steenge & Dabo Guan, 2020. "Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods," Risk Analysis, John Wiley & Sons, vol. 40(8), pages 1612-1631, August.
    8. Haddad Eduardo Amaral & Okuyama Yasuhide, 2016. "Spatial Propagation of the Economic Impacts of Bombing: The Case of the 2006 War in Lebanon," Review of Middle East Economics and Finance, De Gruyter, vol. 12(3), pages 225-256, December.
    9. J. A. León & M. Ordaz & E. Haddad & I. F. Araújo, 2022. "Risk caused by the propagation of earthquake losses through the economy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Irfan Ahmed & Claudio Socci & Rosita Pretaroli & Francesca Severini & Stefano Deriu, 2022. "Socioeconomic spillovers of the 2016–2017 Italian earthquakes: a bi-regional inoperability model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 426-453, January.
    11. Dormady, Noah C. & Rose, Adam & Roa-Henriquez, Alfredo & Morin, C. Blain, 2022. "The cost-effectiveness of economic resilience," International Journal of Production Economics, Elsevier, vol. 244(C).
    12. Elena Ianchovichina & Maros Ivanic, 2016. "Economic Effects of the Syrian War and the Spread of the Islamic State on the Levant," The World Economy, Wiley Blackwell, vol. 39(10), pages 1584-1627, October.
    13. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    14. Yanfang Lyu & Yun Xiang & Dong Wang, 2023. "Evaluating Indirect Economic Losses from Flooding Using Input–Output Analysis: An Application to China’s Jiangxi Province," IJERPH, MDPI, vol. 20(5), pages 1-17, March.
    15. K. Jenkins, 2013. "Indirect economic losses of drought under future projections of climate change: a case study for Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1967-1986, December.
    16. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    17. Adam Rose, 2022. "Behavioral Economic Consequences of Disasters: A Basis for Inclusion in Benefit–Cost Analysis," Economics of Disasters and Climate Change, Springer, vol. 6(2), pages 213-233, July.
    18. Suman K SHARMA, 2010. "Socio-Economic Aspects of Disaster’s Impact: An Assessment of Databases and Methodologies," Economic Growth Centre Working Paper Series 1001, Nanyang Technological University, School of Social Sciences, Economic Growth Centre.
    19. Andre F. T. Avelino & Sandy Dall'erba, 2019. "Comparing the Economic Impact of Natural Disasters Generated by Different Input–Output Models: An Application to the 2007 Chehalis River Flood (WA)," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 85-104, January.
    20. E. E. Koks & M. Bočkarjova & H. de Moel & J. C. J. H. Aerts, 2015. "Integrated Direct and Indirect Flood Risk Modeling: Development and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 882-900, May.

    More about this item

    Keywords

    armed conflict; costs of war; risk analysis; disruptive events; higher-order impacts; CGE model;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • R13 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - General Equilibrium and Welfare Economic Analysis of Regional Economies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:nereus:2024_006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eduardo Amaral Haddad (email available below). General contact details of provider: https://edirc.repec.org/data/neuspbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.