IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-01-51.html
   My bibliography  Save this paper

Biotechnology's Potential Contribution to Global Wood Supply and Forest Conservation

Author

Listed:
  • Sedjo, Roger

    (Resources for the Future)

Abstract

Over the past 30 years, industrial plantation forests have become a major supplier of industrial wood. There are several reasons for this, including the improved economics of planted forests due to biotechnological innovations, the increases in natural forest wood costs due to increasing inaccessibility, and rising wood costs from natural forests due to new environmental restrictions related to logging. Forestry today is on the threshold of the widespread introduction of biotechnology into its operational practices. In many cases, the biotechnology likely to be introduced is simply an extension of that being utilized in agriculture, such as herbicide-tolerant genes. However, biotechnology in forestry also is developing applications unique to forestry, including genes for fiber modification, lignin reduction and extraction, and for the promotion of straight stems and reduced branching.

Suggested Citation

  • Sedjo, Roger, 2001. "Biotechnology's Potential Contribution to Global Wood Supply and Forest Conservation," RFF Working Paper Series dp-01-51, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-01-51
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-01-51.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sedjo, Roger A, 1992. "Property Rights, Genetic Resources, and Biotechnological Change," Journal of Law and Economics, University of Chicago Press, vol. 35(1), pages 199-213, April.
    2. Gardner Brown & Ramanan Laxminarayan, 1998. "Economics of Antibiotic Resistance," Discussion Papers in Economics at the University of Washington 0060, Department of Economics at the University of Washington.
    3. Brent Sohngen & Robert Mendelsohn & Roger Sedjo, 1999. "Forest Management, Conservation, and Global Timber Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    2. Anderson, Soren T. & Laxminarayan, Ramanan & Salant, Stephen W., 2012. "Diversify or focus? Spending to combat infectious diseases when budgets are tight," Journal of Health Economics, Elsevier, vol. 31(4), pages 658-675.
    3. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    4. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    5. Valérie Boisvert & Franck-Dominique Vivien., 2005. "Tiers Monde et biodiversité : tristes tropiques ou tropiques d'abondance ? La régulation internationale des ressources génétiques mise en perspective," Revue Tiers Monde, Programme National Persée, vol. 46(181), pages 185-206.
    6. David Schap & Andrew T. Young, 1999. "Enterprise and Biodiversity: Do Market Forces Yield Diversity of Life?," Cato Journal, Cato Journal, Cato Institute, vol. 19(1), pages 49-67, Spring/Su.
    7. Michetti, Melania & Parrado, Ramiro, 2012. "Improving Land-use modelling within CGE to assess Forest-based Mitigation Potential and Costs," Climate Change and Sustainable Development 122862, Fondazione Eni Enrico Mattei (FEEM).
    8. Frisvold, George B. & Condon, Peter T., 1998. "The convention on biological diversity and agriculture: Implications and unresolved debates1," World Development, Elsevier, vol. 26(4), pages 551-570, April.
    9. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    10. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    11. Sedjo, Roger & Sohngen, Brent & Mendelsohn, Robert, 2001. "Estimating Carbon Supply Curves for Global Forests and Other Land Uses," RFF Working Paper Series dp-01-19, Resources for the Future.
    12. HUBERT Marie-Hélène & MOREAUX Michel, 2007. "The challenge of meeting the future food needs," LERNA Working Papers 07.17.238, LERNA, University of Toulouse.
    13. Sohngen, Brent & Favero, Alice & Jin, Yufang & Huang, Yuhan, 2018. "Global cost estimates of forest climate mitigation with albedo: A new policy approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274307, Agricultural and Applied Economics Association.
    14. Miguel Cantillo, 2015. "Dynamic Investment with Adverse Selection and Moral Hazard," Working Papers 201501, Universidad de Costa Rica, revised Mar 2015.
    15. Chen, Nengwang & Li, Huancheng & Wang, Lihong, 2009. "A GIS-based approach for mapping direct use value of ecosystem services at a county scale: Management implications," Ecological Economics, Elsevier, vol. 68(11), pages 2768-2776, September.
    16. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    17. Kim, Sei Jin & Baker, Justin S. & Sohngen, Brent L. & Shell, Michael, 2018. "Cumulative global forest carbon implications of regional bioenergy expansion policies," Resource and Energy Economics, Elsevier, vol. 53(C), pages 198-219.
    18. Daigneault, Adam J. & Sohngen, Brent L. & Sedjo, Roger, 2020. "Carbon and market effects of U.S. forest taxation policy," Ecological Economics, Elsevier, vol. 178(C).
    19. Rangnekar, Dwijen, 2000. "Plant breeding, biodiversity loss and intellectual property rights," Economics Discussion Papers 2000-5, School of Economics, Kingston University London.
    20. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.

    More about this item

    Keywords

    Biotechnology; breeding; forestry; tree plantations; timber; fiber; genes; GMOs; industrial wood; economics; benefits; costs;
    All these keywords.

    JEL classification:

    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • L73 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Forest Products

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-01-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.