IDEAS home Printed from https://ideas.repec.org/p/rbp/wpaper/2010-006.html
   My bibliography  Save this paper

Propuesta metodológica para la focalización individual de los programas sociales

Author

Listed:
  • Valderrama, Jose

    (Universidad de Lima, Escuela de Economía)

  • Pichihua, Juan

    (Universidad Nacional Agraria La Molina, Facultad de Economía)

Abstract

Se propone una metodología de identificación individual de potenciales beneficiarios de programas sociales. Esta herramienta comprende dos etapas: en la primera se determina un índice de bienestar y en la segunda los puntos de corte que permiten distinguir a los hogares que califican como potenciales beneficiarios. La estimación del índice se basa en una práctica extendida en la literatura especializada: análisis de los componentes principales con escalamiento óptimo. El cálculo de los umbrales es lo novedoso de este trabajo, y se basa en la minimización de una función que depende de los errores de focalización a los que se enfrenta cualquier programa social: infiltración y subcobertura.

Suggested Citation

  • Valderrama, Jose & Pichihua, Juan, 2010. "Propuesta metodológica para la focalización individual de los programas sociales," Working Papers 2010-006, Banco Central de Reserva del Perú.
  • Handle: RePEc:rbp:wpaper:2010-006
    as

    Download full text from publisher

    File URL: https://www.bcrp.gob.pe/docs/Publicaciones/Documentos-de-Trabajo/2010/Documento-de-Trabajo-06-2010.pdf
    File Function: Application/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forrest Young, 1981. "Quantitative analysis of qualitative data," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 357-388, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naomichi Makino, 2015. "Generalized data-fitting factor analysis with multiple quantification of categorical variables," Computational Statistics, Springer, vol. 30(1), pages 279-292, March.
    2. Sara Casacci & Adriano Pareto, 2018. "Subjective Indicators Construction by Distance Indices: An Application to Life Satisfaction Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(3), pages 831-846, June.
    3. Kim, Jung Seek & Ratchford, Brian T., 2013. "A Bayesian multivariate probit for ordinal data with semiparametric random-effects," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 192-208.
    4. van Rosmalen, J.M. & Koning, A.J. & Groenen, P.J.F., 2007. "Optimal Scaling of Interaction Effects in Generalized Linear Models," Econometric Institute Research Papers EI 2007-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Fabio Humberto Sepúlveda Murillo & Jorge Chica Olmo & Norely Margarita Soto Builes, 2019. "Spatial Variability Analysis of Quality of Life and Its Determinants: A Case Study of Medellín, Colombia," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1233-1256, August.
    6. S.M. Shen & Y.L. Lai, 2001. "Handling incomplete Quality-of-Life Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 55(2), pages 121-166, August.
    7. Hansohm, Jürgen, 2007. "Algorithms and error estimations for monotone regression on partially preordered sets," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1043-1050, May.
    8. Florian Schuberth & Jörg Henseler & Theo K. Dijkstra, 2018. "Partial least squares path modeling using ordinal categorical indicators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 9-35, January.
    9. Javier Armando Pineda & Carlos Eduardo Acosta, 2011. "Calidad Del Trabajo: Aproximaciones Teóricas Y Estimación De Un Índice Compuesto," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 29(65), pages 60-105, June.
    10. Jan Leeuw, 1988. "Multivariate analysis with linearizable regressions," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 437-454, December.
    11. Peter Verboon & Ivo Lans, 1994. "Robust canonical discriminant analysis," Psychometrika, Springer;The Psychometric Society, vol. 59(4), pages 485-507, December.
    12. Kuroda, Masahiro & Mori, Yuichi & Iizuka, Masaya & Sakakihara, Michio, 2011. "Acceleration of the alternating least squares algorithm for principal components analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 143-153, January.
    13. Katherine Morales & Miguel Flores & Yasmín Salazar Méndez, 2021. "Analysis of Principal Nonlinear Components for the Construction of a Socioeconomic Stratification Index in Ecuador," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, vol. 88(2), pages 43-82, July.
    14. Vittadini, Giorgio & Lovaglio, Pietro Giorgio, 2007. "Evaluation of the Dagum-Slottje method to estimate household human capital," Structural Change and Economic Dynamics, Elsevier, vol. 18(2), pages 270-278, June.
    15. Abby Israels, 1984. "Redundancy analysis for qualitative variables," Psychometrika, Springer;The Psychometric Society, vol. 49(3), pages 331-346, September.
    16. C Mar-Molinero & J Mingers, 2007. "An evaluation of the limitations of, and alternatives to, the Co-Plot methodology," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 874-886, July.
    17. Seohee Park & Seongeun Kim & Ji Hoon Ryoo, 2020. "Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    18. Heungsun Hwang & Yoshio Takane, 2004. "A multivariate reduced-rank growth curve model with unbalanced data," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 65-79, March.
    19. Groenen, P.J.F. & Nalbantov, G.I. & Bioch, J.C., 2007. "SVM-Maj: a majorization approach to linear support vector machines with different hinge errors," Econometric Institute Research Papers EI 2007-49, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Alexandre Gori Maia & José Maria Jardim Da Silveira, 2014. "Farmers’ Preferences For Genetically Modified Corn In Brazil: The Contribution Of Latent Attitudes," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 196, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rbp:wpaper:2010-006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit (email available below). General contact details of provider: https://edirc.repec.org/data/bcrgvpe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.