IDEAS home Printed from https://ideas.repec.org/p/qmw/qmwecw/530.html
   My bibliography  Save this paper

Econometric Methods of Signal Extraction

Author

Listed:
  • Stephen Pollock

    (Queen Mary, University of London)

Abstract

The Wiener-Kolmogorov signal extraction filters, which are widely used in econometric analysis, are constructed on the basis of statistical models of the processes generating the data. In this paper, such models are used mainly as heuristic devices that are to be specified in whichever ways are appropriate to ensure that the filters have the desired characteristics. The digital Butterworth filters, which are described and illustrated in the paper, are specified in this way. The components of an econometric time series often give rise to spectral structures that fall within well-defined frequency bands that are isolated from each other by spectral dead spaces. We find that the finite-sample Wiener-Kolmogorov formulation lends itself readily to a specialisation that is appropriate for dealing with band-limited components.

Suggested Citation

  • Stephen Pollock, 2005. "Econometric Methods of Signal Extraction," Working Papers 530, Queen Mary University of London, School of Economics and Finance.
  • Handle: RePEc:qmw:qmwecw:530
    as

    Download full text from publisher

    File URL: https://www.qmul.ac.uk/sef/media/econ/research/workingpapers/2005/items/wp530.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    2. Gomez, Victor, 2001. "The Use of Butterworth Filters for Trend and Cycle Estimation in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 365-373, July.
    3. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    4. Andrew C. Harvey & Thomas M. Trimbur, 2003. "General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 244-255, May.
    5. Agustin Maravall & David A. Pierce, 1987. "A Prototypical Seasonal Adjustment Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(2), pages 177-193, March.
    6. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    7. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    8. Pollock, D. S. G., 2000. "Trend estimation and de-trending via rational square-wave filters," Journal of Econometrics, Elsevier, vol. 99(2), pages 317-334, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cassola, Nuno & Morana, Claudio, 2010. "Comovements in volatility in the euro money market," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 525-539, April.
    2. Morana, Claudio, 2007. "Multivariate modelling of long memory processes with common components," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 919-934, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pollock, D.S.G., 2006. "Econometric methods of signal extraction," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2268-2292, May.
    2. Thornton, Michael A., 2013. "Removing seasonality under a changing regime: Filtering new car sales," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 4-14.
    3. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    4. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.
    5. Dagum, Estela Bee, 2010. "Business Cycles and Current Economic Analysis/Los ciclos económicos y el análisis económico actual," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 577-594, Diciembre.
    6. Martyna Marczak & Víctor Gómez, 2017. "Monthly US business cycle indicators: a new multivariate approach based on a band-pass filter," Empirical Economics, Springer, vol. 52(4), pages 1379-1408, June.
    7. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    8. Alessandra Iacobucci & Alain Noullez, 2005. "A Frequency Selective Filter for Short-Length Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 75-102, February.
    9. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, October.
    10. Xiaoshan Chen & Terence Mills, 2012. "Measuring the Euro area output gap using a multivariate unobserved components model containing phase shifts," Empirical Economics, Springer, vol. 43(2), pages 671-692, October.
    11. Lechman, Ewa & Dominiak, Piotr, 2016. "Entrepreneurship vulnerability to business cycle. A new methodology for identification pro-cyclical and counter-cyclical patterns of entrepreneurial activity," MPRA Paper 68793, University Library of Munich, Germany.
    12. Martyna Marczak & Thomas Beissinger, 2013. "Real wages and the business cycle in Germany," Empirical Economics, Springer, vol. 44(2), pages 469-490, April.
    13. Zhao, Shan & Wei, G. W., 2003. "Jump process for the trend estimation of time series," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 219-241, February.
    14. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    15. Ard den Reijer, 2006. "The Dutch business cycle: which indicators should we monitor?," DNB Working Papers 100, Netherlands Central Bank, Research Department.
    16. Mark W. Watson, 2007. "How accurate are real-time estimates of output trends and gaps?," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 93(Spr), pages 143-161.
    17. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    19. Siem Jan Koopman & Soon Yip Wong, 2006. "Extracting Business Cycles using Semi-parametric Time-varying Spectra with Applications to US Macroeconomic Time Series," Tinbergen Institute Discussion Papers 06-105/4, Tinbergen Institute.
    20. Andrew C. Harvey, 2002. "Trends, Cycles, and Convergence," Central Banking, Analysis, and Economic Policies Book Series, in: Norman Loayza & Raimundo Soto & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series Editor) (ed.),Economic Growth: Sources, Trends, and Cycles, edition 1, volume 6, chapter 8, pages 221-250, Central Bank of Chile.

    More about this item

    Keywords

    Signal extraction; Linear filtering; Frequency-domain analysis; Trend estimation;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Owen (email available below). General contact details of provider: https://edirc.repec.org/data/deqmwuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.