IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v96y2023i12d10.1140_epjb_s10051-023-00628-6.html
   My bibliography  Save this article

Analyzing volatility patterns in the Chinese stock market using partial mutual information-based distances

Author

Listed:
  • Arash Sioofy Khoojine

    (Yibin University)

  • Ziyun Feng

    (Yibin University)

  • Mahboubeh Shadabfar

    (Nanjing University of Science and Technology)

  • Negar Sioofy Khoojine

    (Middle East Technical University)

Abstract

This study examines the dynamic range of financial networks in the Chinese stock market between 2019 and 2021. It provides an objective assessment of the network’s characteristics and scalability. The research time-frame is divided into three segments, reflecting the fluctuations of the financial market, including stable, volatile, and follow-up periods. To establish correlations among companies, the study employs the partial mutual information distance (PMID) method, followed by the construction of three minimum spanning tree (MST) networks for each period. Given the non-linear nature of financial phenomena, PMID is found to be more appropriate than linear methods in the study of financial markets. Additionally, the power law is observed in all three networks. This study is organized hierarchically into levels of nodes, clusters, and global indicators, providing a comprehensive perspective on network behavior and adaptation. Three-level indicators are calculated for each of the three networks, and the findings display a noteworthy variation between the volatile network and the other two networks. During stable and follow-up periods, a node-level analysis has indicated strong interconnectedness among companies. In contrast, during volatility, there are dynamic fluctuations in network dynamics. Cluster-level analysis reveals that firms become more essential connectors and actively engaged, with increased centrality. A global analysis shows that companies are more likely to form partnerships with counterparts possessing similar degrees during times of market volatility compared to periods of stability or follow-up periods. To assess the resilience of the constructed networks, we employed Markov chain analysis and examined the maximal connected component (MCC); the study findings suggest that the network is more susceptible to volatility in the observed second period, while demonstrating greater resilience in the follow-up period indicating recovery of financial markets. Graphic abstract

Suggested Citation

  • Arash Sioofy Khoojine & Ziyun Feng & Mahboubeh Shadabfar & Negar Sioofy Khoojine, 2023. "Analyzing volatility patterns in the Chinese stock market using partial mutual information-based distances," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-21, December.
  • Handle: RePEc:spr:eurphb:v:96:y:2023:i:12:d:10.1140_epjb_s10051-023-00628-6
    DOI: 10.1140/epjb/s10051-023-00628-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-023-00628-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-023-00628-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chuangxia & Wen, Shigang & Li, Mengge & Wen, Fenghua & Yang, Xin, 2021. "An empirical evaluation of the influential nodes for stock market network: Chinese A-shares case," Finance Research Letters, Elsevier, vol. 38(C).
    2. Tian Qiu & Bo Zheng & Guang Chen, 2010. "Adaptive financial networks with static and dynamic thresholds," Papers 1002.3432, arXiv.org.
    3. Afees A. Salisu & Riza Demirer & Rangan Gupta, 2023. "Technological Shocks and Stock Market Volatility Over a Century: A GARCH-MIDAS Approach," Working Papers 202308, University of Pretoria, Department of Economics.
    4. Zhimei Lei & Kuo-Jui Wu & Li Cui & Ming K Lim, 2018. "A Hybrid Approach to Explore the Risk Dependency Structure among Agribusiness Firms," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    5. Longsheng Cheng & Mahboubeh Shadabfar & Arash Sioofy Khoojine, 2023. "A State-of-the-Art Review of Probabilistic Portfolio Management for Future Stock Markets," Mathematics, MDPI, vol. 11(5), pages 1-34, February.
    6. repec:mje:mjejnl:v:12:y:2017:i:3:p:161-174 is not listed on IDEAS
    7. Lei Li & Kun Qin & Desheng Wu, 2023. "A Hybrid Approach for the Assessment of Risk Spillover to ESG Investment in Financial Networks," Sustainability, MDPI, vol. 15(7), pages 1-16, April.
    8. Boginski, Vladimir & Butenko, Sergiy & Pardalos, Panos M., 2005. "Statistical analysis of financial networks," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 431-443, February.
    9. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    10. Xinxin Xu & Sheng Ma & Ziqiang Zeng, 2019. "Complex network analysis of bilateral international investment under de-globalization: Structural properties and evolution," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-16, April.
    11. Mansooreh Kazemilari & Ali Mohamadi, 2018. "Topological Network Analysis Based on Dissimilarity Measure of Multivariate Time Series Evolution in the Subprime Crisis," IJFS, MDPI, vol. 6(2), pages 1-16, May.
    12. Fenghua Pan & Chun Yang & He Wang & Dariusz Wójcik, 2020. "Linking global financial networks with regional development: a case study of Linyi, China," Regional Studies, Taylor & Francis Journals, vol. 54(2), pages 187-197, February.
    13. Chu, J. & Nadarajah, S., 2017. "A statistical analysis of UK financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 445-459.
    14. Román Ferrer & Rafael Benítez & Vicente J. Bolós, 2021. "Interdependence between Green Financial Instruments and Major Conventional Assets: A Wavelet-Based Network Analysis," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    15. Igor Kravchuk, 2017. "Interconnectedness and Contagion Effects in International Financial Instruments Markets," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 13(3), pages 161-174.
    16. Yan, Jie & Möhrlen, Corinna & Göçmen, Tuhfe & Kelly, Mark & Wessel, Arne & Giebel, Gregor, 2022. "Uncovering wind power forecasting uncertainty sources and their propagation through the whole modelling chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larissa M. Batrancea & Ömer Akgüller & Mehmet Ali Balcı & Anca Nichita, 2024. "Financial network communities and methodological insights: a case study for Borsa Istanbul Sustainability Index," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Constructing financial network based on PMFG and threshold method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 104-113.
    2. Stephan Bialonski & Martin Wendler & Klaus Lehnertz, 2011. "Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    3. Nie, Chun-Xiao & Song, Fu-Tie, 2018. "Analyzing the stock market based on the structure of kNN network," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 148-159.
    4. Gang-Jin Wang & Chi Xie & Peng Zhang & Feng Han & Shou Chen, 2014. "Dynamics of Foreign Exchange Networks: A Time-Varying Copula Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-11, May.
    5. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    6. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    7. Ben Ameur, Hachmi & Ftiti, Zied & Louhichi, Waël & Yousfi, Mohamed, 2024. "Do green investments improve portfolio diversification? Evidence from mean conditional value-at-risk optimization," International Review of Financial Analysis, Elsevier, vol. 94(C).
    8. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Collective behavior of cryptocurrency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 499-509.
    9. Marton Gosztonyi, 2021. "A Snapshot of the Ownership Network of the Budapest Stock Exchange," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 20(3), pages 31-58.
    10. Lillo, Felipe & Valdés, Rodrigo, 2016. "Dynamics of financial markets and transaction costs: A graph-based study," Research in International Business and Finance, Elsevier, vol. 38(C), pages 455-465.
    11. Xue Guo & Hu Zhang & Tianhai Tian, 2019. "Multi-Likelihood Methods for Developing Stock Relationship Networks Using Financial Big Data," Papers 1906.08088, arXiv.org.
    12. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    13. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    14. Elisa Letizia & Fabrizio Lillo, 2017. "Corporate payments networks and credit risk rating," Papers 1711.07677, arXiv.org, revised Sep 2018.
    15. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets around the Global Financial Crisis," Papers 1806.04363, arXiv.org.
    16. Nie, Chun-Xiao, 2017. "Correlation dimension of financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 632-639.
    17. Muzi Chen & Nan Li & Lifen Zheng & Difang Huang & Boyao Wu, 2024. "Dynamic Correlation of Market Connectivity, Risk Spillover and Abnormal Volatility in Stock Price," Papers 2403.19363, arXiv.org.
    18. Zugang Liu, 2013. "The co-evolution of integrated corporate financial networks and supply chain networks with insolvency risk," Computational Management Science, Springer, vol. 10(2), pages 253-275, June.
    19. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    20. Frank Emmert-Streib & Matthias Dehmer, 2010. "Influence of the Time Scale on the Construction of Financial Networks," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:96:y:2023:i:12:d:10.1140_epjb_s10051-023-00628-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.