IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202252.html
   My bibliography  Save this paper

Forecasting National Recessions of the United States with State-Level Climate Risks: Evidence from Model Averaging in Markov-Switching Models

Author

Listed:
  • Oguzhan Cepni

    (Copenhagen Business School, Department of Economics, Porcelaenshaven 16A, Frederiksberg DK-2000, Denmark)

  • Christina Christou

    (School of Economics and Management, Open University of Cyprus, 2252, Latsia, Cyprus)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

Abstract

This paper utilizes Bayesian (static) model averaging (BMA) and dynamic model averaging (DMA) incorporated into Markov-switching (MS) models to forecast business cycle turning points of the United States (US) with state-level climate risks data, proxied by temperature changes and its (realized) volatility. We find that forecasts obtained from the DMA combination scheme provide timely updates of the US business cycles based on the information content of the metrics of state-level climate risks, particularly volatility of temperature, relative to the corresponding small-scale MS benchmarks that use national-level values of climate change-related predictors.

Suggested Citation

  • Oguzhan Cepni & Christina Christou & Rangan Gupta, 2022. "Forecasting National Recessions of the United States with State-Level Climate Risks: Evidence from Model Averaging in Markov-Switching Models," Working Papers 202252, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202252
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    2. Michael T. Owyang & Jeremy Piger & Howard J. Wall, 2015. "Forecasting National Recessions Using State‐Level Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(5), pages 847-866, August.
    3. Martin Beraja & Erik Hurst & Juan Ospina, 2019. "The Aggregate Implications of Regional Business Cycles," Econometrica, Econometric Society, vol. 87(6), pages 1789-1833, November.
    4. Riccardo Colacito & Bridget Hoffmann & Toan Phan, 2019. "Temperature and Growth: A Panel Analysis of the United States," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(2-3), pages 313-368, March.
    5. Sheng, Xin & Gupta, Rangan & Çepni, Oğuzhan, 2022. "The effects of climate risks on economic activity in a panel of US states: The role of uncertainty," Economics Letters, Elsevier, vol. 213(C).
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Michael Donadelli & Marcus Jüppner & Antonio Paradiso & Christian Schlag, 2021. "Computing Macro-Effects and Welfare Costs of Temperature Volatility: A Structural Approach," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 347-394, August.
    8. Donadelli, M. & Jüppner, M. & Riedel, M. & Schlag, C., 2017. "Temperature shocks and welfare costs," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 331-355.
    9. Michael Donadelli & Marcus Jüppner & Sergio Vergalli, 2022. "Temperature Variability and the Macroeconomy: A World Tour," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 221-259, September.
    10. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    11. James D. Hamilton & Michael T. Owyang, 2012. "The Propagation of Regional Recessions," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 935-947, November.
    12. Sheng, Xin & Gupta, Rangan & Cepni, Oguzhan, 2022. "Persistence of state-level uncertainty of the United States: The role of climate risks," Economics Letters, Elsevier, vol. 215(C).
    13. Haroon Mumtaz & Laura Sunder‐Plassmann & Angeliki Theophilopoulou, 2018. "The State‐Level Impact of Uncertainty Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(8), pages 1879-1899, December.
    14. Mumtaz, Haroon, 2018. "Does uncertainty affect real activity? Evidence from state-level data," Economics Letters, Elsevier, vol. 167(C), pages 127-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Wenting & Sheng, Xin & Gupta, Rangan & Karmakar, Sayar, 2024. "Extreme weather shocks and state-level inflation of the United States," Economics Letters, Elsevier, vol. 238(C).
    2. Fava, Santino Del & Gupta, Rangan & Pierdzioch, Christian & Rognone, Lavinia, 2024. "Forecasting international financial stress: The role of climate risks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    3. Xin Sheng & Rangan Gupta & Oguzhan Cepni, 2023. "Time-Varying Effects of Extreme Weather Shocks on Output Growth of the United States," Working Papers 202324, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oguzhan Cepni & Rangan Gupta & Wenting Liao & Jun Ma, 2024. "Climate risks and forecastability of the weekly state‐level economic conditions of the United States," International Review of Finance, International Review of Finance Ltd., vol. 24(1), pages 154-162, March.
    2. Xin Sheng & Rangan Gupta & Wenting Liao & Oguzhan Cepni, 2024. "The Effects of Uncertainty on Economic Conditions across US States: The Role of Climate Risks," Working Papers 202410, University of Pretoria, Department of Economics.
    3. Massimiliano Caporin & Petre Caraiani & Oguzhan Cepni & Rangan Gupta, 2024. "Predicting the Conditional Distribution of US Stock Market Systemic Stress: The Role of Climate Risks," Working Papers 202407, University of Pretoria, Department of Economics.
    4. Sheng, Xin & Gupta, Rangan & Cepni, Oguzhan, 2022. "Persistence of state-level uncertainty of the United States: The role of climate risks," Economics Letters, Elsevier, vol. 215(C).
    5. Guérin, Pierre & Leiva-Leon, Danilo, 2017. "Model averaging in Markov-switching models: Predicting national recessions with regional data," Economics Letters, Elsevier, vol. 157(C), pages 45-49.
    6. Mohammad Reza Yeganegi & Hossein Hassani & Rangan Gupta, 2023. "The ENSO cycle and forecastability of global inflation and output growth: Evidence from standard and mixed‐frequency multivariate singular spectrum analyses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1690-1707, November.
    7. Kejin Wu & Sayar Karmakar & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Stock Market Volatility Over a Century in an Emerging Market Economy: The Case of South Africa," Working Papers 202326, University of Pretoria, Department of Economics.
    8. Gupta, Rangan & Nel, Jacobus & Salisu, Afees A. & Ji, Qiang, 2023. "Predictability of economic slowdowns in advanced countries over eight centuries: The role of climate risks," Finance Research Letters, Elsevier, vol. 54(C).
    9. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    10. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    11. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    12. Matteo Foglia & Vasilios Plakandaras & Rangan Gupta & Qiang Ji, 2024. "Long-Span Multi-Layer Spillovers between Moments of Advanced Equity Markets: The Role of Climate Risks," Working Papers 202415, University of Pretoria, Department of Economics.
    13. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    14. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    15. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
    16. Veiga, Helena, 2006. "Volatility forecasts: a continuous time model versus discrete time models," DES - Working Papers. Statistics and Econometrics. WS ws062509, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Filippo Natoli, 2023. "The macroeconomic effects of temperature surprise shocks," Temi di discussione (Economic working papers) 1407, Bank of Italy, Economic Research and International Relations Area.
    18. Çepni, Oğuzhan & Gupta, Rangan & Pienaar, Daniel & Pierdzioch, Christian, 2022. "Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?," Energy Economics, Elsevier, vol. 114(C).
    19. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    20. Adrian Fernandez‐Perez & Bart Frijns & Ilnara Gafiatullina & Alireza Tourani‐Rad, 2019. "Properties and the predictive power of implied volatility in the New Zealand dairy market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(5), pages 612-631, May.

    More about this item

    Keywords

    Business fluctuations and cycles; Climate risks; Markov-switching models; Model averaging;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.