IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201685.html
   My bibliography  Save this paper

Do Leading Indicators Forecast U.S. Recessions? A Nonlinear Re-Evaluation Using Historical Data

Author

Listed:
  • Vasilios Plakandaras

    (Department of Economics, Democritus University of Thrace, Greece)

  • Juncal Cunado

    (Department of Economics, University of Navarra, Spain)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, South Africa)

  • Mark E. Wohar

    (College of Business Administration, University of Nebraska at Omaha USA, and School of Business and Economics, Loughborough University, UK)

Abstract

This paper analyzes to what extent a selection of leading indicators are able to forecast U.S. recessions by means of both dynamic probit models and Support Vector Machines (SVM) models, using monthly data from January 1871 to June 2016. The results suggest that the probit models foresee U.S. recession periods more closely than SVM models for up to 6 months ahead, while the SVM models are more accurate at longer horizons. Furthermore, SVM models appear to discriminate between recessions and tranquil periods better than probit models do. Finally, the most accurate forecasting models include oil, stock returns and the term spread as leading indicators.

Suggested Citation

  • Vasilios Plakandaras & Juncal Cunado & Rangan Gupta & Mark E. Wohar, 2016. "Do Leading Indicators Forecast U.S. Recessions? A Nonlinear Re-Evaluation Using Historical Data," Working Papers 201685, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201685
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    2. Marcelle Chauvet & Simon Potter, 2005. "Forecasting recessions using the yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 77-103.
    3. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    4. Bernanke, Ben S & Blinder, Alan S, 1992. "The Federal Funds Rate and the Channels of Monetary Transmission," American Economic Review, American Economic Association, vol. 82(4), pages 901-921, September.
    5. Maria Dolores Gadea Rivas & Gabriel Perez-Quiros, 2015. "The Failure To Predict The Great Recession—A View Through The Role Of Credit," Journal of the European Economic Association, European Economic Association, vol. 13(3), pages 534-559, June.
    6. Michael Dueker, 2005. "Dynamic Forecasts of Qualitative Variables: A Qual VAR Model of U.S. Recessions," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 96-104, January.
    7. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    8. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    9. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    10. Ben S. Bernanke, 1990. "On the predictive power of interest rates and interest rate spreads," New England Economic Review, Federal Reserve Bank of Boston, issue Nov, pages 51-68.
    11. Engemann, Kristie M. & Kliesen, Kevin L. & Owyang, Michael T., 2011. "Do Oil Shocks Drive Business Cycles? Some U.S. And International Evidence," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 498-517, November.
    12. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    13. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    14. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    15. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    16. Travis J. Berge, 2015. "Predicting Recessions with Leading Indicators: Model Averaging and Selection over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(6), pages 455-471, September.
    17. van der Mensbrugghe, Dominique & Osorio Rodarte, Israel & Burns, Andrew & Baffes, John, 2009. "How to feed the world in 2050: Macroeconomic environment, commodity markets - A longer temr outlook," MPRA Paper 19019, University Library of Munich, Germany.
    18. Ashoka Mody & Mark P. Taylor, 2003. "The High-Yield Spread as a Predictor of Real Economic Activity: Evidence of a Financial Accelerator for the United States," IMF Staff Papers, Palgrave Macmillan, vol. 50(3), pages 1-3.
    19. Periklis Gogas & Theophilos Papadimitriou & Efthymia Chrysanthidou, 2015. "Yield Curve Point Triplets in Recession Forecasting," International Finance, Wiley Blackwell, vol. 18(2), pages 207-226, June.
    20. Gertler, Mark & Lown, Cara S, 1999. "The Information in the High-Yield Bond Spread for the Business Cycle: Evidence and Some Implications," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 15(3), pages 132-150, Autumn.
    21. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    22. Raffaella Giacomini & Barbara Rossi, 2006. "How Stable is the Forecasting Performance of the Yield Curve for Output Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 783-795, December.
    23. Chen, Shiu-Sheng, 2009. "Predicting the bear stock market: Macroeconomic variables as leading indicators," Journal of Banking & Finance, Elsevier, vol. 33(2), pages 211-223, February.
    24. Michael J. Dueker, 1997. "Strengthening the case for the yield curve as a predictor of U.S. recessions," Review, Federal Reserve Bank of St. Louis, issue Mar, pages 41-51.
    25. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    26. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    27. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
    28. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    29. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    30. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    31. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Rangan & Kanda, Patrick & Tiwari, Aviral Kumar & Wohar, Mark E., 2019. "Time-varying predictability of oil market movements over a century of data: The role of US financial stress," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David C. Wheelock & Mark E. Wohar, 2009. "Can the term spread predict output growth and recessions? a survey of the literature," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 419-440.
    2. Hännikäinen, Jari, 2017. "When does the yield curve contain predictive power? Evidence from a data-rich environment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
    3. B. De Backer & M. Deroose & Ch. Van Nieuwenhuyze, 2019. "Is a recession imminent? The signal of the yield curve," Economic Review, National Bank of Belgium, issue i, pages 69-93, June.
    4. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.
    5. Aguiar-Conraria, Luís & Martins, Manuel M.F. & Soares, Maria Joana, 2012. "The yield curve and the macro-economy across time and frequencies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1950-1970.
    6. Shuping Shi & Peter C. B. Phillips & Stan Hurn, 2018. "Change Detection and the Causal Impact of the Yield Curve," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 966-987, November.
    7. Reyna Cerecero Mario & Salazar Cavazos Diana & Salgado Banda Héctor, 2008. "The Yield Curve and its Relation with Economic Activity: The Mexican Case," Working Papers 2008-15, Banco de México.
    8. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    9. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    10. Fernandez-Perez, Adrian & Fernández-Rodríguez, Fernando & Sosvilla-Rivero, Simón, 2014. "The term structure of interest rates as predictor of stock returns: Evidence for the IBEX 35 during a bear market," International Review of Economics & Finance, Elsevier, vol. 31(C), pages 21-33.
    11. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    12. Hwang, Youngjin, 2019. "Forecasting recessions with time-varying models," Journal of Macroeconomics, Elsevier, vol. 62(C).
    13. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    14. McMillan, David G., 2021. "When and why do stock and bond markets predict US economic growth?," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 331-343.
    15. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    16. Chauvet, Marcelle & Senyuz, Zeynep, 2016. "A dynamic factor model of the yield curve components as a predictor of the economy," International Journal of Forecasting, Elsevier, vol. 32(2), pages 324-343.
    17. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    18. Gross, Marco, 2011. "Corporate bond spreads and real activity in the euro area - Least Angle Regression forecasting and the probability of the recession," Working Paper Series 1286, European Central Bank.
    19. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    20. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.

    More about this item

    Keywords

    Dynamic Probit Models; Support Vector Machines; U.S. Recessions;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.