IDEAS home Printed from https://ideas.repec.org/p/mil/wpdepa/2008-04.html
   My bibliography  Save this paper

Methodological overview of Rasch model and application in customer satisfaction survey data

Author

Listed:
  • Francesca DE BATTISTI
  • Giovanna NICOLINI
  • Silvia SALINI

Abstract

This paper deals with the measurement of a service or product quality using Customer Satisfaction Survey results. Many different methods are used to analyse customer satisfaction data. Some use statistical models which estimate the relationship between the latent and manifest variables (LISREL, PLS, etc. ), whilst others use dimensionality reduction methods (FA, PCA, etc. ). All of these methods require a numerical quantification of the categories and consequently the distance between the numerical labels is fixed and the linear relationship between the variables implicitly assumed. Moreover these methods produce a customer satisfaction measure for each subject and an evaluation of its importance on the satisfaction level for each item. When analyzing quality and satisfaction levels together, the Rasch model (RM) appears to be particularly appropriate. A Likert scale is not required and non-linear relationships are involved. Moreover, a Rasch analysis can also act as a useful diagnostic tool for calibrating the questionnaire itself. In this paper we will present three different applications of the Rasch Model for the purposes of measuring quality and customer satisfaction levels. For each technique we will highlight its peculiarities, give an interpretation of the parameters used, analyse the model’s fit with the data and perform a critical analysis of the results.

Suggested Citation

  • Francesca DE BATTISTI & Giovanna NICOLINI & Silvia SALINI, 2008. "Methodological overview of Rasch model and application in customer satisfaction survey data," Departmental Working Papers 2008-04, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
  • Handle: RePEc:mil:wpdepa:2008-04
    as

    Download full text from publisher

    File URL: http://wp.demm.unimi.it/files/wp/2008/DEMM-2008_004wp.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    2. Giovanna Nicolini & Francesca De Battisti, 2006. "Methods for Summarizing the Rasch Model Coefficients," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1039, Universitá degli Studi di Milano.
    3. Karl Jöreskog, 1994. "On the estimation of polychoric correlations and their asymptotic covariance matrix," Psychometrika, Springer;The Psychometric Society, vol. 59(3), pages 381-389, September.
    4. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    5. Bertoli-Barsotti, Lucio, 2003. "An order-preserving property of the maximum likelihood estimates for the Rasch model," Statistics & Probability Letters, Elsevier, vol. 61(1), pages 91-96, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. A. Ferrari & S. Salini, 2008. "Measuring Service Quality: The Opinion of Europeans about Utilities," Working Papers 2008.36, Fondazione Eni Enrico Mattei.
    2. Chang, Hsin-Li & Yang, Cheng-Hua, 2008. "Explore airlines’ brand niches through measuring passengers’ repurchase motivation—an application of Rasch measurement," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 105-112.
    3. Ivana Bassi & Matteo Carzedda & Enrico Gori & Luca Iseppi, 2022. "Rasch analysis of consumer attitudes towards the mountain product label," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-25, December.
    4. Antonio Caronni & Marina Ramella & Pietro Arcuri & Claudia Salatino & Lucia Pigini & Maurizio Saruggia & Chiara Folini & Stefano Scarano & Rosa Maria Converti, 2023. "The Rasch Analysis Shows Poor Construct Validity and Low Reliability of the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST 2.0) Questionnaire," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    5. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    6. Curt Hagquist & Raili Välimaa & Nina Simonsen & Sakari Suominen, 2017. "Differential Item Functioning in Trend Analyses of Adolescent Mental Health – Illustrative Examples Using HBSC-Data from Finland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 673-691, September.
    7. Salzberger, Thomas & Newton, Fiona J. & Ewing, Michael T., 2014. "Detecting gender item bias and differential manifest response behavior: A Rasch-based solution," Journal of Business Research, Elsevier, vol. 67(4), pages 598-607.
    8. Rasmus A. X. Persson, 2023. "Theoretical evaluation of partial credit scoring of the multiple-choice test item," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 143-161, August.
    9. Chang, Hsin-Li & Wu, Shun-Cheng, 2008. "Exploring the vehicle dependence behind mode choice: Evidence of motorcycle dependence in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 307-320, February.
    10. Genge, Ewa & Bartolucci, Francesco, 2019. "Are attitudes towards immigration changing in Europe? An analysis based on bidimensional latent class IRT models," MPRA Paper 94672, University Library of Munich, Germany.
    11. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.
    12. Salzberger, Thomas & Koller, Monika, 2013. "Towards a new paradigm of measurement in marketing," Journal of Business Research, Elsevier, vol. 66(9), pages 1307-1317.
    13. Richard N McNeely & Salissou Moutari & Samuel Arba-Mosquera & Shwetabh Verma & Jonathan E Moore, 2018. "An alternative application of Rasch analysis to assess data from ophthalmic patient-reported outcome instruments," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-32, June.
    14. Kuan-Yu Jin & Yi-Jhen Wu & Hui-Fang Chen, 2022. "A New Multiprocess IRT Model With Ideal Points for Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 297-321, June.
    15. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    16. Piotr Tarka, 2013. "Model of latent profile factor analysis for ordered categorical data," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 171-182, March.
    17. Xiaohui Zheng & Sophia Rabe-Hesketh, 2007. "Estimating parameters of dichotomous and ordinal item response models with gllamm," Stata Journal, StataCorp LP, vol. 7(3), pages 313-333, September.
    18. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    19. Lai-Fa Hung & Wen-Chung Wang, 2012. "The Generalized Multilevel Facets Model for Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 37(2), pages 231-255, April.
    20. Cheng, Yung-Hsiang & Liu, Kuo-Chu, 2012. "Evaluating bicycle-transit users’ perceptions of intermodal inconvenience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1690-1706.

    More about this item

    Keywords

    Latent trait model; data reduction methods; ordinal variables;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2008-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEMM Working Papers (email available below). General contact details of provider: https://edirc.repec.org/data/damilit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.