IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/69001.html
   My bibliography  Save this paper

Plausibility of big shocks within a linear state space setting with skewness

Author

Listed:
  • Koloch, Grzegorz

Abstract

In this paper we provide formulae for likelihood function, filtration densities and prediction densities of a linear state space model in which shocks are allowed to be skewed. In particular we work with the closed skew normal distribution, see González-Farías et al. (2004), which nests a normal distribution as a special case. Closure of the csn distribution with respect to all necessary transformations in the state space setting is guaranteed by a simple state dimension reduction procedure which does not influence the value of the likelihood function. Presented formulae allow for estimation, filtration and prediction of vector autoregressions and first order perturbations of DSGE models with skewed shocks. This allows to assess asymmetries in shocks, observed data, impulse responses and forecasts confidence intervals. Some of the advantages of using the outlined approach may involve capturing asymmetric inflation risks in central banks forecasts or producing more plausible probabilities of deep but rare recessionary episodes with DSGE/VAR filtration. Exemplary estimation results are provided which show that within a linear setting with skewness frequency of big shocks can be rather plausibly identifed.

Suggested Citation

  • Koloch, Grzegorz, 2016. "Plausibility of big shocks within a linear state space setting with skewness," MPRA Paper 69001, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:69001
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/69001/1/MPRA_paper_69001.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    3. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    4. Genton, Marc G. & He, Li & Liu, Xiangwei, 2001. "Moments of skew-normal random vectors and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 319-325, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    2. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    3. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    4. Arjun Gupta & John Chen, 2004. "A class of multivariate skew-normal models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 305-315, June.
    5. Wang, Tonghui & Li, Baokun & Gupta, Arjun K., 2009. "Distribution of quadratic forms under skew normal settings," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 533-545, March.
    6. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    7. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    8. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    9. Fang, B.Q., 2005. "Noncentral quadratic forms of the skew elliptical variables," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 410-430, August.
    10. Naveau, Philippe & Genton, Marc G. & Shen, Xilin, 2005. "A skewed Kalman filter," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 382-400, June.
    11. Fang, B. Q., 2003. "The skew elliptical distributions and their quadratic forms," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 298-314, November.
    12. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    13. Gupta, Arjun K. & González-Farías, Graciela & Domínguez-Molina, J. Armando, 2004. "A multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 181-190, April.
    14. Huang, Wen-Jang & Chen, Yan-Hau, 2007. "Generalized skew-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1137-1147, June.
    15. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. Reinaldo Arellano-Valle & Marc Genton, 2010. "An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 363-381, April.
    17. Alessandra Durio & Yacov Yu. Nikitin, 2001. "Local asympotic efficiency of some goodness-of-fit tests under skew alternatives," ICER Working Papers 04-2001, ICER - International Centre for Economic Research.
    18. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    19. Jana, Sayantee & Balakrishnan, Narayanaswamy & Hamid, Jemila S., 2018. "Estimation of the parameters of the extended growth curve model under multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 111-128.
    20. Alessandra Durio & Yakov Nikitin, 2002. "Asympotic efficiency of signed - rank symmetry tests under skew alternatives," ICER Working Papers 12-2002, ICER - International Centre for Economic Research.

    More about this item

    Keywords

    Maximum likelihood estimation; state space models; closed skew-normal distribution; DSGE; VAR;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:69001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.