IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/62994.html
   My bibliography  Save this paper

Identifying structural breaks in stochastic mortality models

Author

Listed:
  • O'Hare, Colin
  • Li, Youwei

Abstract

In recent years the issue of life expectancy has become of upmost importance to pension providers, insurance companies and the government bodies in the developed world. Significant and consistent improvements in mortality rates and hence life expectancy have led to unprecedented increases in the cost of providing for older ages. This has resulted in an explosion of stochastic mortality models forecasting trends in mortality data in order to anticipate future life expectancy and hence quantify the costs of providing for future ageing populations. Many stochastic models of mortality rates identify linear trends in mortality rates by time, age and cohort and forecast these trends into the future using standard statistical methods. These approaches rely on the assumption that structural breaks in the trend do not exist or do not have a significant impact on the mortality forecasts. Recent literature has started to question this assumption. In this paper we carry out a comprehensive investigation of the presence or otherwise of structural breaks in a selection of leading mortality models. We find that structural breaks are present in the majority of cases. In particular, where there is a structural break present we find that allowing for that improves the forecast result significantly.

Suggested Citation

  • O'Hare, Colin & Li, Youwei, 2014. "Identifying structural breaks in stochastic mortality models," MPRA Paper 62994, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:62994
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/62994/1/MPRA_paper_62994.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    2. Achim Zeileis, 2005. "A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 445-466.
    3. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    4. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    5. Plat, Richard, 2009. "On stochastic mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 393-404, December.
    6. Lawrence R. Carter & Alexia Prskawetz, 2001. "Examining structural shifts in mortality using the Lee-Carter method," MPIDR Working Papers WP-2001-007, Max Planck Institute for Demographic Research, Rostock, Germany.
    7. Edviges Coelho & Luis C. Nunes, 2011. "Forecasting mortality in the event of a structural change," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(3), pages 713-736, July.
    8. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    9. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    10. Harris, David & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Testing For A Unit Root In The Presence Of A Possible Break In Trend," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1545-1588, December.
    11. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    12. Shripad Tuljapurkar & Carl Boe, 1998. "Mortality Change and Forecasting," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(4), pages 13-47.
    13. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    14. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    15. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    16. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    17. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    18. O’Hare, Colin & Li, Youwei, 2012. "Explaining young mortality," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 12-25.
    19. Shripad Tuljapurkar, 1998. "Forecasting Mortality Change," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(4), pages 127-134.
    20. Currie, Iain D., 2011. "Modelling and Forecasting the Mortality of the Very Old," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 419-427, November.
    21. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    22. Shripad Tuljapurkar & Carl Boe, "undated". "Mortality Change and Forecasting: How Much and How Little Do We Know?," Pension Research Council Working Papers 98-2, Wharton School Pension Research Council, University of Pennsylvania.
    23. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuchs, Johann & Söhnlein, Doris & Weber, Brigitte & Weber, Enzo, 2016. "Ein integriertes Modell zur Schätzung von Arbeitskräfteangebot und Bevölkerung," IAB-Forschungsbericht 201610, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    2. F. Peters & J. P. Mackenbach & W. J. Nusselder, 2016. "Does the Impact of the Tobacco Epidemic Explain Structural Changes in the Decline of Mortality?," European Journal of Population, Springer;European Association for Population Studies, vol. 32(5), pages 687-702, December.
    3. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    4. Fuchs, Johann & Söhnlein, Doris & Weber, Brigitte & Weber, Enzo, 2017. "Forecasting labour supply and population: an integrated stochastic model," IAB-Discussion Paper 201701, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Colin O’hare & Youwei Li, 2017. "Models of mortality rates – analysing the residuals," Applied Economics, Taylor & Francis Journals, vol. 49(52), pages 5309-5323, November.
    4. Börger, Matthias & Schupp, Johannes, 2018. "Modeling trend processes in parametric mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 369-380.
    5. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    7. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    8. Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.
    9. O’Hare, Colin & Li, Youwei, 2012. "Explaining young mortality," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 12-25.
    10. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    11. O'Hare, Colin & Li, Youwei, 2014. "Is mortality spatial or social?," Economic Modelling, Elsevier, vol. 42(C), pages 198-207.
    12. Li, Han & O’Hare, Colin, 2017. "Semi-parametric extensions of the Cairns–Blake–Dowd model: A one-dimensional kernel smoothing approach," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 166-176.
    13. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    14. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    15. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    16. Han Lin Shang & Steven Haberman, 2020. "Retiree Mortality Forecasting: A Partial Age-Range or a Full Age-Range Model?," Risks, MDPI, vol. 8(3), pages 1-11, July.
    17. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    18. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    19. Risk, J. & Ludkovski, M., 2016. "Statistical emulators for pricing and hedging longevity risk products," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 45-60.
    20. Han Li & Colin O’Hare, 2019. "Mortality Forecasting: How Far Back Should We Look in Time?," Risks, MDPI, vol. 7(1), pages 1-15, February.

    More about this item

    Keywords

    Mortality; stochastic models; forecasting; structural breaks;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:62994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.