IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/47908.html
   My bibliography  Save this paper

A Generalization of Gray and Whaley's Option

Author

Listed:
  • François-Heude, Alain
  • Yousfi, Ouidad

Abstract

Options markets display interesting features. Most options are executed when they are near the money. However, the underlying asset price varies significantly during the life-time option. It is therefore difficult to predict the future option position. In order to make options' markets more liquid, the paper proposes to replace all options into At-the-Money (ATM) ones by resetting the strike price X to the asset price at pre-specified time point t, before maturity time T. Strike price is locked in at the then underlying asset price S_{t} regardless whether it is above or below S_{t}.The reset condition is in exchange for deposit in the Clearing House. The idea is to provide a general valuation of reset option of Gray and Whaley (1999) in which reset condition does not depend on the relation between the strike price and the underlying asset price. The contribution of this paper is double. First, it shows that our general model option, under specific conditions, can be generalized to the most common ones like for example Black-Scholes-Merton, forward-start and strike reset pricing formulae etc... Second, in line with Haug and Haug (2001), we use the CRR binominal approach (Cox et al., 1979) and an estimation program of the cumulative bivariate normal distribution to provide closed-form solution for the pricing of the generalized European reset option.

Suggested Citation

  • François-Heude, Alain & Yousfi, Ouidad, 2013. "A Generalization of Gray and Whaley's Option," MPRA Paper 47908, University Library of Munich, Germany, revised 30 Jun 2013.
  • Handle: RePEc:pra:mprapa:47908
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/47908/1/MPRA_paper_47908.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/64376/8/MPRA_paper_64376.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen F. Gray & Robert E. Whaley, 1999. "Reset Put Options: Valuation, Risk Characteristics, and an Application," Australian Journal of Management, Australian School of Business, vol. 24(1), pages 1-20, June.
    2. Vladislav Kargin, 2005. "Lattice Option Pricing By Multidimensional Interpolation," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 635-647, October.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 277-283, September.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    7. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. François-Heude, Alain & Yousfi, Ouidad, 2013. "On the liquidity of CAC 40 index options Market," MPRA Paper 47921, University Library of Munich, Germany, revised 01 Jul 2013.
    2. Guangming Xue & Bin Qin & Guohe Deng, 2018. "Valuation on an Outside-Reset Option with Multiple Resettable Levels and Dates," Complexity, Hindawi, vol. 2018, pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. François-Heude, Alain & Yousfi, Ouidad, 2013. "On the liquidity of CAC 40 index options Market," MPRA Paper 47921, University Library of Munich, Germany, revised 01 Jul 2013.
    3. Alain François-Heude & Ouidad Yous, 2014. "On the liquidity of CAC 40 index options Market," Working Papers 2014-445, Department of Research, Ipag Business School.
    4. repec:dau:papers:123456789/1046 is not listed on IDEAS
    5. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, July.
    6. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    9. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    10. Marcel Philipp Müller & Sebastian Stöckl & Steffen Zimmermann & Bernd Heinrich, 2016. "Decision Support for IT Investment Projects," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 58(6), pages 381-396, December.
    11. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," PSE-Ecole d'économie de Paris (Postprint) halshs-00286054, HAL.
    12. repec:dau:papers:123456789/5374 is not listed on IDEAS
    13. Miller, Luke & Bertus, Mark, 2005. "License valuation in the aerospace industry: A real options approach," Review of Financial Economics, Elsevier, vol. 14(3-4), pages 225-239.
    14. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    15. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    16. Scholes, Myron S, 1998. "Derivatives in a Dynamic Environment," American Economic Review, American Economic Association, vol. 88(3), pages 350-370, June.
    17. van den Goorbergh, R.W.J. & Genest, C. & Werker, B.J.M., 2003. "Multivariate Option Pricing Using Dynamic Copula Models," Discussion Paper 2003-122, Tilburg University, Center for Economic Research.
    18. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    19. van den Goorbergh, R.W.J., 2004. "Essays on optimal hedging and investment strategies and on derivative pricing," Other publications TiSEM 4b4b16af-8621-463f-bbfa-0, Tilburg University, School of Economics and Management.
    20. Rojas-Bernal, Alejandro & Villamizar-Villegas, Mauricio, 2021. "Pricing the exotic: Path-dependent American options with stochastic barriers," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 2(1).
    21. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    22. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.

    More about this item

    Keywords

    strike reset; at-the-money option; liquidity; reset option.;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:47908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.