IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/halshs-00368336.html
   My bibliography  Save this paper

Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market

Author

Listed:
  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Jing Zhang

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, ECNU - East China Normal University [Shangaï])

Abstract

This paper develops the method for pricing bivariate contingent claims under General Autoregressive Conditionally Heteroskedastic (GARCH) process. In order to provide a general framework being able to accommodate skewness, leptokurtosis, fat tails as well as the time varying volatility that are often found in financial data, generalized hyperbolic (GH) distribution is used for innovations. As the association between the underlying assets may vary over time, the dynamic copula approach is considered. Therefore, the proposed method proves to play an important role in pricing bivariate option. The approach is illustrated for Chinese market with one type of better-of-two-markets claims : call option on the better performer of Shanghai Stock Composite Index and Shenzhen Stock Composite Index. Results show that the option prices obtained by the GARCH-GH model with time-varying copula differ substantially from the prices implied by the GARCH-Gaussian dynamic copula model. Moreover, the empirical work displays the advantage of the suggested method.

Suggested Citation

  • Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
  • Handle: RePEc:hal:pseptp:halshs-00368336
    DOI: 10.1080/13518470902895344
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00368336
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00368336/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/13518470902895344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua Rosenberg, 1999. "Semiparametric Pricing of Multivariate Contingent Claims," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-028, New York University, Leonard N. Stern School of Business-.
    2. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Stulz, ReneM., 1982. "Options on the minimum or the maximum of two risky assets : Analysis and applications," Journal of Financial Economics, Elsevier, vol. 10(2), pages 161-185, July.
    5. David C. Shimko, 1994. "Options on futures spreads: Hedging, speculation, and valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 14(2), pages 183-213, April.
    6. D. Guegan & J. Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 421-430.
    7. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    8. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 277-283, September.
    9. van den Goorbergh, Rob W.J. & Genest, Christian & Werker, Bas J.M., 2005. "Bivariate option pricing using dynamic copula models," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 101-114, August.
    10. Abdou Kâ Diongue & Dominique Guegan & Rodney C. Wolff, 2008. "Exact Maximum Likelihood estimation for the BL-GARCH model under elliptical distributed innovations," Post-Print halshs-00270719, HAL.
    11. Geske, Robert, 1979. "The valuation of compound options," Journal of Financial Economics, Elsevier, vol. 7(1), pages 63-81, March.
    12. Dominique Guegan & Jing Zhang, 2006. "Change analysis of dynamic copula for measuring dependence in multivariate financial data," Post-Print halshs-00189141, HAL.
    13. Robert J. Elliott & Dilip B. Madan, 1998. "A Discrete Time Equivalent Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 127-152, April.
    14. U. Cherubini & E. Luciano, 2002. "Bivariate option pricing with copulas," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 69-85.
    15. Mark Rubinstein, 1976. "The Valuation of Uncertain Income Streams and the Pricing of Options," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 407-425, Autumn.
    16. Granger, Clive W.J. & Terasvirta, Timo & Patton, Andrew J., 2006. "Common factors in conditional distributions for bivariate time series," Journal of Econometrics, Elsevier, vol. 132(1), pages 43-57, May.
    17. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    18. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    19. Heynen, Ronald & Kemna, Angelien & Vorst, Ton, 1994. "Analysis of the Term Structure of Implied Volatilities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(1), pages 31-56, March.
    20. Giuseppe Storti & Cosimo Vitale, 2003. "BL-GARCH models and asymmetries in volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 19-39, February.
    21. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
    22. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    23. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-10.
    24. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    25. Rubinstein, Mark, 1983. "Displaced Diffusion Option Pricing," Journal of Finance, American Finance Association, vol. 38(1), pages 213-217, March.
    26. Brennan, M J, 1979. "The Pricing of Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 34(1), pages 53-68, March.
    27. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    28. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    29. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    30. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2008. "Option pricing under GARCH models with generalized hyperbolic innovations (II): data and results," Documents de travail du Centre d'Economie de la Sorbonne b08047, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," Post-Print halshs-00368334, HAL.
    2. See-Woo Kim & Yong-Ki Ma & Ciprian Necula, 2023. "Modeling Tail Dependence Using Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 129-147, June.
    3. Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," PSE-Ecole d'économie de Paris (Postprint) halshs-00368334, HAL.
    4. Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," PSE-Ecole d'économie de Paris (Postprint) halshs-00375765, HAL.
    5. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," PSE-Ecole d'économie de Paris (Postprint) hal-00511965, HAL.
    6. Cyril Caillault, Dominique Guégan, 2009. "Forecasting VaR and Expected Shortfall Using Dynamical Systems: A Risk Management Strategy," Frontiers in Finance and Economics, SKEMA Business School, vol. 6(1), pages 26-50, April.
    7. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," Post-Print hal-00511965, HAL.
    8. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    9. Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," Post-Print halshs-00375765, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    2. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," Post-Print halshs-00368336, HAL.
    3. Dominique Guegan & Jing Zhang, 2007. "Pricing bivariate option under GARCH-GH model with dynamic copula : application for Chinese market," Post-Print halshs-00188248, HAL.
    4. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," PSE-Ecole d'économie de Paris (Postprint) halshs-00286054, HAL.
    5. Zhang, J. & Guégan, D., 2008. "Pricing bivariate option under GARCH processes with time-varying copula," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1095-1103, June.
    6. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," Post-Print halshs-00259242, HAL.
    7. Jing Zhang & Dominique Guegan, 2008. "Pricing bivariate option under GARCH processes with time-varying copula," Post-Print halshs-00286054, HAL.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    10. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    11. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    12. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    13. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    14. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    15. Alexandru Badescu & Robert J. Elliott & Juan-Pablo Ortega, 2012. "Quadratic hedging schemes for non-Gaussian GARCH models," Papers 1209.5976, arXiv.org, revised Dec 2013.
    16. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    17. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    18. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2008. "Option pricing under GARCH models with generalized hyperbolic innovations (I): methodology," Documents de travail du Centre d'Economie de la Sorbonne b08037, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    20. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:halshs-00368336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.