IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v266y2018i1d10.1007_s10479-017-2655-4.html
   My bibliography  Save this article

Pricing derivatives on multiple assets: recombining multinomial trees based on Pascal’s simplex

Author

Listed:
  • Dirk Sierag

    (CWI
    VU University Amsterdam)

  • Bernard Hanzon

    (University College Cork)

Abstract

In this paper a direct generalisation of the recombining binomial tree model by Cox et al. (J Financ Econ 7:229–263, 1979) based on the Pascal’s simplex is constructed. This discrete model can be used to approximate the prices of derivatives on multiple assets in a Black–Scholes market environment. The generalisation keeps most aspects of the binomial model intact, of which the following are the most important: The direct link to the Pascal’s simplex (which specialises to Pascal’s triangle in the binomial case); the matching of moments of the (log-transformed) process; convergence to the correct option prices both for European and American options, when the time step length goes to zero and the completeness of the model, at least for sufficiently small time step. The goal of this paper is to present basic theoretical aspects of this approach. However, we also illustrate the approach by a number of example calculations. Further possible developments of this approach are discussed in a final section.

Suggested Citation

  • Dirk Sierag & Bernard Hanzon, 2018. "Pricing derivatives on multiple assets: recombining multinomial trees based on Pascal’s simplex," Annals of Operations Research, Springer, vol. 266(1), pages 101-127, July.
  • Handle: RePEc:spr:annopr:v:266:y:2018:i:1:d:10.1007_s10479-017-2655-4
    DOI: 10.1007/s10479-017-2655-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2655-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2655-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ekvall, Niklas, 1996. "A lattice approach for pricing of multivariate contingent claims," European Journal of Operational Research, Elsevier, vol. 91(2), pages 214-228, June.
    2. Boyle, Phelim P & Evnine, Jeremy & Gibbs, Stephen, 1989. "Numerical Evaluation of Multivariate Contingent Claims," The Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 241-250.
    3. Kaushik Amin & Ajay Khanna, 1994. "Convergence Of American Option Values From Discrete‐ To Continuous‐Time Financial Models1," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 289-304, October.
    4. Jimmy E. Hilliard, 2014. "Robust binomial lattices for univariate and multivariate applications: choosing probabilities to match local densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 101-110, January.
    5. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    6. Chen, Ren-Raw & Chung, San-Lin & Yang, Tyler T., 2002. "Option Pricing in a Multi-Asset, Complete Market Economy," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(4), pages 649-666, December.
    7. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
    8. Fischer, Stanley, 1978. "Call Option Pricing when the Exercise Price Is Uncertain, and the Valuation of Index Bonds," Journal of Finance, American Finance Association, vol. 33(1), pages 169-176, March.
    9. Stulz, ReneM., 1982. "Options on the minimum or the maximum of two risky assets : Analysis and applications," Journal of Financial Economics, Elsevier, vol. 10(2), pages 161-185, July.
    10. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 277-283, September.
    11. He, Hua, 1990. "Convergence from Discrete- to Continuous-Time Contingent Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 523-546.
    12. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    15. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    16. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    17. Ho, Teng-Suan & Stapleton, Richard C & Subrahmanyam, Marti G, 1995. "Multivariate Binomial Approximations for Asset Prices with Nonstationary Variance and Covariance Characteristics," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1125-1152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," JRFM, MDPI, vol. 13(12), pages 1-33, December.
    2. Yuan Hu & Abootaleb Shirvani & W. Brent Lindquist & Frank J. Fabozzi & Svetlozar T. Rachev, 2020. "Option Pricing Incorporating Factor Dynamics in Complete Markets," Papers 2011.08343, arXiv.org.
    3. Yen Thuan Trinh & Bernard Hanzon, 2022. "Option Pricing and CVA Calculations using the Monte Carlo-Tree (MC-Tree) Method," Papers 2202.00785, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    3. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    4. Peter W. Duck & Chao Yang & David P. Newton & Martin Widdicks, 2009. "Singular Perturbation Techniques Applied To Multiasset Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 457-486, July.
    5. Joshua Rosenberg, 1999. "Semiparametric Pricing of Multivariate Contingent Claims," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-028, New York University, Leonard N. Stern School of Business-.
    6. Joshua V. Rosenberg, 2003. "Nonparametric pricing of multivariate contingent claims," Staff Reports 162, Federal Reserve Bank of New York.
    7. S H Martzoukos, 2009. "Real R&D options and optimal activation of two-dimensional random controls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 843-858, June.
    8. Martzoukos, Spiros H., 2001. "The option on n assets with exchange rate and exercise price risk," Journal of Multinational Financial Management, Elsevier, vol. 11(1), pages 1-15, February.
    9. Yoram Landskroner & Alon Raviv, 2008. "The valuation of inflation‐indexed and FX convertible bonds," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(7), pages 634-655, July.
    10. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
    11. Dong Zou & Pu Gong, 2017. "A Lattice Framework with Smooth Convergence for Pricing Real Estate Derivatives with Stochastic Interest Rate," The Journal of Real Estate Finance and Economics, Springer, vol. 55(2), pages 242-263, August.
    12. Ren-Raw Chen & Jeffrey Huang & William Huang & Robert Yu, 2021. "An Artificial Intelligence Approach to the Valuation of American-Style Derivatives: A Use of Particle Swarm Optimization," JRFM, MDPI, vol. 14(2), pages 1-22, February.
    13. repec:dau:papers:123456789/5374 is not listed on IDEAS
    14. Rosenberg, Joshua V., 1998. "Pricing multivariate contingent claims using estimated risk-neutral density functions," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 229-247, April.
    15. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    16. Sarah Bryant & Spiros Martzoukos, 1999. "Multi-currency options and financial institutions' hedging: Correlation does matter," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(4), pages 478-488, November.
    17. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    18. Kyoung-Sook Moon & Hongjoong Kim, 2013. "A multi-dimensional local average lattice method for multi-asset models," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 873-884, May.
    19. Yen Thuan Trinh & Bernard Hanzon, 2022. "Option Pricing and CVA Calculations using the Monte Carlo-Tree (MC-Tree) Method," Papers 2202.00785, arXiv.org.
    20. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    21. Vladislav Kargin, 2005. "Lattice Option Pricing By Multidimensional Interpolation," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 635-647, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:266:y:2018:i:1:d:10.1007_s10479-017-2655-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.