IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/43441.html
   My bibliography  Save this paper

Theory and methods of panel data models with interactive effects

Author

Listed:
  • Bai, Jushan
  • Li, Kunpeng

Abstract

This paper considers the maximum likelihood estimation of the panel data models with interactive effects. Motivated in economics and other social sciences, a notable feature of the model is that the explanatory variables are correlated with the unobserved effects. The usual within-group estimator is inconsistent. Existing methods for consistent estimation are either designed for panel data with short time periods or are less efficient. The maximum likelihood estimator has desirable properties and is easy to implement, as illustrated by the Monte Carlo simulations. This paper develops the inferential theory for the maximum likelihood estimator, including consistency, rate of convergence and the limiting distributions. We further extend the model to include time-invariant regressors and common regressors (cross-section invariant). The regression coefficients for the time-invariant regressors are time-varying, and the coefficients for the common regressors are cross-sectionally varying.

Suggested Citation

  • Bai, Jushan & Li, Kunpeng, 2010. "Theory and methods of panel data models with interactive effects," MPRA Paper 43441, University Library of Munich, Germany, revised Dec 2012.
  • Handle: RePEc:pra:mprapa:43441
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/43441/1/MPRA_paper_43441.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    2. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    3. Kneip, Alois & Sickles, Robin C. & Song, Wonho, 2012. "A New Panel Data Treatment For Heterogeneity In Time Trends," Econometric Theory, Cambridge University Press, vol. 28(3), pages 590-628, June.
    4. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    5. Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
    6. Amemiya, Yasuo & Fuller, Wayne A. & Pantula, Sastry G., 1987. "The asymptotic distributions of some estimators for a factor analysis model," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 51-64, June.
    7. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    8. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    9. Donald Rubin & Dorothy Thayer, 1982. "EM algorithms for ML factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(1), pages 69-76, March.
    10. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    11. Breitung, Jörg & Tenhofen, Jörn, 2011. "GLS Estimation of Dynamic Factor Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1150-1166.
    12. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    13. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    14. Ledyard Tucker, 1958. "An inter-battery method of factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(2), pages 111-136, June.
    15. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    16. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    17. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arteaga-Molina, Luis A. & Rodríguez-Poo, Juan M., 2019. "Empirical likelihood based inference for a categorical varying-coefficient panel data model with fixed effects," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 110-124.
    2. Xuan Liang & Jiti Gao & Xiaodong Gong, 2022. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
    3. Li, Kathleen T. & Bell, David R., 2017. "Estimation of average treatment effects with panel data: Asymptotic theory and implementation," Journal of Econometrics, Elsevier, vol. 197(1), pages 65-75.
    4. Jia Chen, 2019. "Estimating latent group structure in time-varying coefficient panel data models," The Econometrics Journal, Royal Economic Society, vol. 22(3), pages 223-240.
    5. Archer Gong Zhang & Jiahua Chen, 2023. "Optimal Estimation under a Semiparametric Density Ratio Model," Papers 2309.09103, arXiv.org.
    6. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Georg Keilbar & Juan M. Rodriguez-Poo & Alexandra Soberon & Weining Wang, 2022. "A semiparametric approach for interactive fixed effects panel data models," Papers 2201.11482, arXiv.org, revised Mar 2023.
    3. Li, Kunpeng & Cui, Guowei & Lu, Lina, 2020. "Efficient estimation of heterogeneous coefficients in panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 216(2), pages 327-353.
    4. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.
    5. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    6. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    7. Jörg Breitung & In Choi, 2013. "Factor models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 11, pages 249-265, Edward Elgar Publishing.
      • In Choi & Jorg Breitung, 2011. "Factor models," Working Papers 1121, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Dec 2011.
    8. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
    9. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 47/14, Institute for Fiscal Studies.
    10. Bai, Jushan & Liao, Yuan, 2017. "Inferences in panel data with interactive effects using large covariance matrices," Journal of Econometrics, Elsevier, vol. 200(1), pages 59-78.
    11. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    12. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    13. Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021. "Augmented factor models with applications to validating market risk factors and forecasting bond risk premia," Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
    14. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    15. Jushan Bai & Kunpeng Li, 2016. "Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
    16. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    17. Li, Kunpeng & Lu, Lina, 2014. "Efficient estimation of heterogeneous coefficients in panel data models with common shock," MPRA Paper 59312, University Library of Munich, Germany.
    18. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
    19. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    20. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.

    More about this item

    Keywords

    factor error structure; factors; factor loadings; maximum likelihood; principal components; within-group estimator; simultaneous equations;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:43441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.