IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i1p16-36.html
   My bibliography  Save this article

Parametric estimation and tests through divergences and the duality technique

Author

Listed:
  • Broniatowski, Michel
  • Keziou, Amor

Abstract

We introduce estimation and test procedures through divergence optimization for discrete or continuous parametric models. This approach is based on a new dual representation for divergences. We treat point estimation and tests for simple and composite hypotheses, extending the maximum likelihood technique. Another view of the maximum likelihood approach, for estimation and tests, is given. We prove existence and consistency of the proposed estimates. The limit laws of the estimates and test statistics (including the generalized likelihood ratio one) are given under both the null and the alternative hypotheses, and approximations of the power functions are deduced. A new procedure of construction of confidence regions, when the parameter may be a boundary value of the parameter space, is proposed. Also, a solution to the irregularity problem of the generalized likelihood ratio test pertaining to the number of components in a mixture is given, and a new test is proposed, based on [chi]2-divergence on signed finite measures and the duality technique.

Suggested Citation

  • Broniatowski, Michel & Keziou, Amor, 2009. "Parametric estimation and tests through divergences and the duality technique," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 16-36, January.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:1:p:16-36
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00103-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Györfi, L. & Vajda, I., 2002. "Asymptotic distributions for goodness-of-fit statistics in a sequence of multinomial models," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 57-67, January.
    2. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    3. M. L. Menéndez & D. Morales & L. Pardo & I. Vajda, 1998. "Asymptotic distributions of φ‐divergences of hypothetical and observed frequencies on refined partitions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(1), pages 71-89, March.
    4. Domingo Morales & Leandro Pardo, 2001. "Some approximations to power functions of ϕ-divergence tests in parametric models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 249-269, December.
    5. Biau, Gérard & Devroye, Luc, 2005. "Density estimation by the penalized combinatorial method," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 196-208, May.
    6. Raúl Jiménz & Yongzhao Shao, 2001. "On robustness and efficiency of minimum divergence estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 241-248, December.
    7. Vaart,A. W. van der, 1998. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521496032.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    2. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    3. Amor Keziou & Aida Toma, 2021. "A Robust Version of the Empirical Likelihood Estimator," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    4. Subtil, Ana & de Oliveira, M. Rosário & Gonçalves, Luzia, 2012. "Conditional dependence diagnostic in the latent class model: A simulation study," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1407-1412.
    5. Ben-Tal, A. & den Hertog, D. & De Waegenaere, A.M.B. & Melenberg, B. & Rennen, G., 2011. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Other publications TiSEM 4d43dc51-86d9-4804-8563-9, Tilburg University, School of Economics and Management.
    6. Broniatowski, Michel, 2014. "Minimum divergence estimators, maximum likelihood and exponential families," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 27-33.
    7. Toma, Aida & Leoni-Aubin, Samuela, 2013. "Optimal robust M-estimators using Rényi pseudodistances," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 359-373.
    8. V. I. Bakhtin & A. V. Lebedev, 2022. "Sup-Sums Principles for F-Divergence and a New Definition for t-Entropy," Journal of Theoretical Probability, Springer, vol. 35(1), pages 350-369, March.
    9. Diaa Al Mohamad, 2018. "Towards a better understanding of the dual representation of phi divergences," Statistical Papers, Springer, vol. 59(3), pages 1205-1253, September.
    10. Chalabi, Yohan & Wuertz, Diethelm, 2012. "Portfolio optimization based on divergence measures," MPRA Paper 43332, University Library of Munich, Germany.
    11. Aida Toma & Samuela Leoni-Aubin, 2015. "Robust Portfolio Optimization Using Pseudodistances," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-26, October.
    12. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    13. Toma, Aida & Leoni-Aubin, Samuela, 2010. "Robust tests based on dual divergence estimators and saddlepoint approximations," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1143-1155, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    2. Diaa Al Mohamad, 2018. "Towards a better understanding of the dual representation of phi divergences," Statistical Papers, Springer, vol. 59(3), pages 1205-1253, September.
    3. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    4. Bruffaerts, C. & De Rock, B. & Dehon, C., 2013. "The robustness of the hyperbolic efficiency estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 349-363.
    5. Rempała, Grzegorz A. & Wesołowski, Jacek, 2016. "Double asymptotics for the chi-square statistic," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 317-325.
    6. Ayman Hijazy & András Zempléni, 2021. "Gamma Process-Based Models for Disease Progression," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 241-255, March.
    7. Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.
    8. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    9. Sangyeol Lee & Okyoung Na, 2005. "Test for parameter change based on the estimator minimizing density-based divergence measures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 553-573, September.
    10. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    11. Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    12. Long, Hongwei & Shimizu, Yasutaka & Sun, Wei, 2013. "Least squares estimators for discretely observed stochastic processes driven by small Lévy noises," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 422-439.
    13. Zhan, Tingting & Chevoneva, Inna & Iglewicz, Boris, 2011. "Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 457-465, January.
    14. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    15. Biau, Gérard & Wegkamp, Marten, 2005. "A note on minimum distance estimation of copula densities," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 105-114, June.
    16. Battey, Heather & Linton, Oliver, 2014. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 43-67.
    17. Antic, J. & Laffont, C.M. & Chafaï, D. & Concordet, D., 2009. "Comparison of nonparametric methods in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 642-656, January.
    18. Park, Chanseok & Basu, Ayanendranath & G. Lindsay, Bruce, 2002. "The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of minimum disparity estimators," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 21-33, March.
    19. Ro Pak & Ayanendranath Basu, 1998. "Minimum Disparity Estimation in Linear Regression Models: Distribution and Efficiency," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 503-521, September.
    20. Pak, Ro Jin, 1996. "Minimum Hellinger distance estimation in simple linear regression models; distribution and efficiency," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 263-269, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:1:p:16-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.