IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/3504.html
   My bibliography  Save this paper

Evaluating the Precision of Estimators of Quantile-Based Risk Measures

Author

Listed:
  • Cotter, John
  • Dowd, Kevin

Abstract

This paper examines the precision of estimators of Quantile-Based Risk Measures (Value at Risk, Expected Shortfall, Spectral Risk Measures). It first addresses the question of how to estimate the precision of these estimators, and proposes a Monte Carlo method that is free of some of the limitations of existing approaches. It then investigates the distribution of risk estimators, and presents simulation results suggesting that the common practice of relying on asymptotic normality results might be unreliable with the sample sizes commonly available to them. Finally, it investigates the relationship between the precision of different risk estimators and the distribution of underlying losses (or returns), and yields a number of useful conclusions.

Suggested Citation

  • Cotter, John & Dowd, Kevin, 2007. "Evaluating the Precision of Estimators of Quantile-Based Risk Measures," MPRA Paper 3504, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:3504
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/3504/1/MPRA_paper_3504.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. B. John Manistre & Geoffrey Hancock, 2005. "Variance of the CTE Estimator," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 129-156.
    2. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    3. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk (2): Expected Utility Maximization and Tail Risk," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(2), pages 95-115, April.
    4. Tak Siu & Howell Tong & Hailiang Yang, 2004. "On Bayesian Value at Risk: From Linear to Non-Linear Portfolios," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(2), pages 161-184, June.
    5. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(1), pages 87-121, January.
    6. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    7. Christian Gourieroux & Wei Liu, 2006. "Sensitivity Analysis of Distortion Risk Measures," Working Papers 2006-33, Center for Research in Economics and Statistics.
    8. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    9. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    10. Song Xi Chen, 2008. "Nonparametric Estimation of Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 87-107, Winter.
    11. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    12. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    13. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 227-255.
    14. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    2. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Cotter & Kevin Dowd, 2010. "Estimating financial risk measures for futures positions: A nonparametric approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
    2. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    3. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    4. Giannopoulos, Kostas & Tunaru, Radu, 2005. "Coherent risk measures under filtered historical simulation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 979-996, April.
    5. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers 25/12, Institute for Fiscal Studies.
    6. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers CWP25/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Wang, Chuan-Sheng & Zhao, Zhibiao, 2016. "Conditional Value-at-Risk: Semiparametric estimation and inference," Journal of Econometrics, Elsevier, vol. 195(1), pages 86-103.
    8. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    9. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    10. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    11. Zhongde Luo, 2020. "Nonparametric kernel estimation of CVaR under $$\alpha $$α-mixing sequences," Statistical Papers, Springer, vol. 61(2), pages 615-643, April.
    12. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    13. Christian Gourieroux & Wei Liu, 2006. "Efficient Portfolio Analysis Using Distortion Risk Measures," Working Papers 2006-17, Center for Research in Economics and Statistics.
    14. Deepak Jadhav & T.V. Ramanathan & U.V. Naik-Nimbalkar, 2009. "Modified Estimators of the Expected Shortfall," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 8(2), pages 87-107, May.
    15. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    16. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2022. "Proper use of the modified Sharpe ratios in performance measurement: rearranging the Cornish Fisher expansion," Annals of Operations Research, Springer, vol. 313(2), pages 691-712, June.
    17. Jinyu Zhou & Jigao Yan & Dongya Cheng, 2024. "Strong consistency of tail value-at-risk estimator and corresponding general results under widely orthant dependent samples," Statistical Papers, Springer, vol. 65(6), pages 3357-3394, August.
    18. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    19. Haoyu Chen & Tiantian Mao & Fan Yang, 2024. "Estimation of the Adjusted Standard-deviatile for Extreme Risks," Papers 2411.07203, arXiv.org.
    20. Saša ŽIKOVIÆ & Randall K. FILER, 2013. "Ranking of VaR and ES Models: Performance in Developed and Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(4), pages 327-359, August.

    More about this item

    JEL classification:

    • G00 - Financial Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:3504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.