IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/24314.html
   My bibliography  Save this paper

A generalization of Rader's utility representation theorem

Author

Listed:
  • Bosi, Gianni
  • Zuanon, Magalì

Abstract

Rader's utility representation theorem guarantees the existence of an upper semicontinuous utility function for any upper semicontinuous total preorder on a second countable topological space. In this paper we present a generalization of Rader's theorem to not necessarily total preorders that are weakly upper semicontinuous.

Suggested Citation

  • Bosi, Gianni & Zuanon, Magalì, 2010. "A generalization of Rader's utility representation theorem," MPRA Paper 24314, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:24314
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/24314/1/MPRA_paper_24314.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghanshyam B. Mehta, 1997. "A remark on a utility representation theorem of Rader (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(2), pages 367-370.
    2. Trout Rader, 1963. "The Existence of a Utility Function to Represent Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 30(3), pages 229-232.
    3. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    4. Richter, Marcel K, 1980. "Continuous and Semi-Continuous Utility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(2), pages 293-299, June.
    5. Romano Isler, 1997. "Semicontinuous utility functions in topological spaces," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 20(1), pages 111-116, June.
    6. Alcantud, J. C. R. & Rodriguez-Palmero, C., 1999. "Characterization of the existence of semicontinuous weak utilities," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 503-509, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    2. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    3. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    4. Cesar Martinelli & Mikhail Freer, 2016. "General Revealed Preferences," Working Papers 1059, George Mason University, Interdisciplinary Center for Economic Science, revised Jun 2016.
    5. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    6. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    7. Kopylov, Igor, 2016. "Canonical utility functions and continuous preference extensions," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 32-37.
    8. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    9. David B. BROWN & Enrico G. DE GIORGI & Melvyn SIM, 2009. "A Satiscing Alternative to Prospect Theory," Swiss Finance Institute Research Paper Series 09-19, Swiss Finance Institute.
    10. Gianni Bosi & Laura Franzoi, 2023. "A simple characterization of the existence of upper semicontinuous order-preserving functions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(2), pages 203-210, October.
    11. J.C.R. Alcantud, 1999. "Weak utilities from acyclicity," Theory and Decision, Springer, vol. 47(2), pages 185-196, October.
    12. Richter, Marcel K. & Wong, Kam-Chau, 2000. "Definable utility in o-minimal structures," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 159-172, October.
    13. Athanasios Andrikopoulos, 2016. "A characterization of the generalized optimal choice set through the optimization of generalized weak utilities," Theory and Decision, Springer, vol. 80(4), pages 611-621, April.
    14. Christopher P. Chambers & Alan D. Miller, 2023. "Multiple Adjusted Quantiles," Papers 2305.06354, arXiv.org.
    15. Mihm, Maximilian & Ozbek, Kemal, 2019. "On the identification of changing tastes," Games and Economic Behavior, Elsevier, vol. 116(C), pages 203-216.
    16. J. Alcantud & G. Bosi & M. Campión & J. Candeal & E. Induráin & C. Rodríguez-Palmero, 2008. "Continuous Utility Functions Through Scales," Theory and Decision, Springer, vol. 64(4), pages 479-494, June.
    17. Yann Rébillé, 2017. "An axiomatization of continuous quasilinear utility," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 301-315, November.
    18. Aliprantis, Charalambos D. & Border, Kim C. & Burkinshaw, Owen, 1997. "Economies with Many Commodities," Journal of Economic Theory, Elsevier, vol. 74(1), pages 62-105, May.
    19. Alcantud, J. C. R. & Rodriguez-Palmero, C., 1999. "Characterization of the existence of semicontinuous weak utilities," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 503-509, December.
    20. Gianni Bosi & Roberto Daris & Gabriele Sbaiz, 2024. "New characterizations of completely useful topologies in mathematical utility theory," Papers 2402.18324, arXiv.org, revised May 2024.

    More about this item

    Keywords

    Weakly upper semicontinuous preorder; utility function;

    JEL classification:

    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:24314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.