IDEAS home Printed from https://ideas.repec.org/p/fth/minner/296.html
   My bibliography  Save this paper

Definable Utility in O-Minimal Structures

Author

Listed:
  • Richter, M.K.
  • Wong, K-C.

Abstract

Representing binary ordering relations by numerical functions is a basic problem of the theory of measurement. We obtain definable utility representations for (both continuous and upper semicontinuous) definable preferences in o-minimal expansions of real closed ordered fields. Such preferences have particular significance for modeling 'bounded rationality'. The initial application of these ideas in economics was made by Blume and Zame. Our results extend their Theorem 1 in several directions.

Suggested Citation

  • Richter, M.K. & Wong, K-C., 1996. "Definable Utility in O-Minimal Structures," Papers 296, Minnesota - Center for Economic Research.
  • Handle: RePEc:fth:minner:296
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Debreu, Gerard, 1970. "Economies with a Finite Set of Equilibria," Econometrica, Econometric Society, vol. 38(3), pages 387-392, May.
    2. Trout Rader, 1963. "The Existence of a Utility Function to Represent Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 30(3), pages 229-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meroni, Claudia & Pimienta, Carlos, 2017. "The structure of Nash equilibria in Poisson games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 128-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    2. R. M. Harstad & R. Selten, 2014. "Bounded-rationality models:tasks to become intellectually competitive," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    3. John Geanakoplos, 2008. "Overlapping Generations Models of General Equilibrium," Cowles Foundation Discussion Papers 1663, Cowles Foundation for Research in Economics, Yale University.
    4. Bernard Dumas & Andrew Lyasoff, 2012. "Incomplete-Market Equilibria Solved Recursively on an Event Tree," Journal of Finance, American Finance Association, vol. 67(5), pages 1897-1941, October.
    5. Bonnisseau, Jean-Marc & Nguenamadji, Orntangar, 2010. "On the uniqueness of local equilibria," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 623-632, September.
    6. Manjira Datta & Kevin Reffett & Łukasz Woźny, 2018. "Comparing recursive equilibrium in economies with dynamic complementarities and indeterminacy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 593-626, October.
    7. Lu Hong & Scott Page, 1994. "Reducing informational costs in endowment mechanisms," Review of Economic Design, Springer;Society for Economic Design, vol. 1(1), pages 103-117, December.
    8. Chichilnisky, Graciela & Kalman, P.J., 1977. "Properties of critical points and operators in economics," MPRA Paper 7976, University Library of Munich, Germany.
    9. Subiza, Begona & Peris, Josep E., 1997. "Numerical representation for lower quasi-continuous preferences," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 149-156, April.
    10. Claudio Mattalia, 2003. "Existence of solutions and asset pricing bubbles in general equilibrium models," ICER Working Papers - Applied Mathematics Series 02-2003, ICER - International Centre for Economic Research.
    11. Riedel, Frank, 2005. "Generic determinacy of equilibria with local substitution," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 603-616, August.
    12. Behrens, Kristian, 2007. "On the location and lock-in of cities: Geography vs transportation technology," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 22-45, January.
    13. Rui Pascoa, Mario & Ribeiro da Costa Werlang, Sergio, 1999. "Determinacy of equilibria in nonsmooth economies," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 289-302, November.
    14. Magill, Michael & Quinzii, Martine, 2014. "Anchoring expectations of inflation," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 86-105.
    15. Shikhman, V. & Nesterov, Yu. & Ginsburgh, V., 2018. "Power method tâtonnements for Cobb–Douglas economies," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 84-92.
    16. Christian Bidard, 1977. "Equations du commerce international," Revue Économique, Programme National Persée, vol. 28(2), pages 240-251.
    17. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    18. Geanakoplos, J. D. & Polemarchakis, H. M., 1984. "Intertemporally separable, overlapping-generations economies," Journal of Economic Theory, Elsevier, vol. 34(2), pages 207-215, December.
    19. Hashimzade, Nigar & Majumdar, Mukul, 2002. "Survival under Uncertainty in an Exchange Economy," Working Papers 02-12, Cornell University, Center for Analytic Economics.
    20. Saverio M. Fratini, 2020. "Interest, profit and saving in Arrow-Debreu equilibrium models," Bulletin of Political Economy, Bulletin of Political Economy, vol. 14(1), pages 39-53, June.

    More about this item

    Keywords

    CONSUMERS;

    JEL classification:

    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:minner:296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/deumnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.