IDEAS home Printed from https://ideas.repec.org/a/spr/etbull/v11y2023i2d10.1007_s40505-023-00251-9.html
   My bibliography  Save this article

A simple characterization of the existence of upper semicontinuous order-preserving functions

Author

Listed:
  • Gianni Bosi

    (University of Trieste)

  • Laura Franzoi

    (University of Trieste)

Abstract

We introduce an upper semicontinuity condition concerning a not necessarily total preorder on a topological space, namely strong upper semicontinuity, and in this way we extend to the nontotal case the famous Rader’s theorem, which guarantees the existence of an upper semicontinuous order-preserving function for an upper semicontinuous total preorder on a second countable topological space. We show that Rader’s theorem is not generalizable if we adopt weaker upper semicontinuity conditions already introduced in the literature. We characterize the existence of an upper semicontinuous order-preserving function for all strongly upper semicontinuous preorders on a metrizable topological space.

Suggested Citation

  • Gianni Bosi & Laura Franzoi, 2023. "A simple characterization of the existence of upper semicontinuous order-preserving functions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(2), pages 203-210, October.
  • Handle: RePEc:spr:etbull:v:11:y:2023:i:2:d:10.1007_s40505-023-00251-9
    DOI: 10.1007/s40505-023-00251-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40505-023-00251-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40505-023-00251-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herden, G., 1991. "Topological spaces for which every continuous total preorder can be represented by a continuous utility function," Mathematical Social Sciences, Elsevier, vol. 22(2), pages 123-136, October.
    2. Herden, Gerhard & Levin, Vladimir L., 2012. "Utility representation theorems for Debreu separable preorders," Journal of Mathematical Economics, Elsevier, vol. 48(3), pages 148-154.
    3. Bosi, Gianni & Herden, Gerhard, 2016. "On continuous multi-utility representations of semi-closed and closed preorders," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 20-29.
    4. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    5. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    6. Ghanshyam B. Mehta, 1997. "A remark on a utility representation theorem of Rader (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(2), pages 367-370.
    7. Federico Quartieri, 2022. "On the Existence of Greatest Elements and Maximizers," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 375-389, November.
    8. Trout Rader, 1963. "The Existence of a Utility Function to Represent Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 30(3), pages 229-232.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianni Bosi & Roberto Daris & Gabriele Sbaiz, 2024. "New characterizations of completely useful topologies in mathematical utility theory," Papers 2402.18324, arXiv.org, revised May 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    2. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    3. Athanasios Andrikopoulos, 2016. "A characterization of the generalized optimal choice set through the optimization of generalized weak utilities," Theory and Decision, Springer, vol. 80(4), pages 611-621, April.
    4. Cesar Martinelli & Mikhail Freer, 2016. "General Revealed Preferences," Working Papers 1059, George Mason University, Interdisciplinary Center for Economic Science, revised Jun 2016.
    5. Gianni Bosi & Magalì E. Zuanon, 2017. "Maximal elements of quasi upper semicontinuous preorders on compact spaces," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 109-117, April.
    6. Bosi, Gianni & Zuanon, Magalì, 2010. "A generalization of Rader's utility representation theorem," MPRA Paper 24314, University Library of Munich, Germany.
    7. Gianni Bosi & Roberto Daris & Gabriele Sbaiz, 2024. "New characterizations of completely useful topologies in mathematical utility theory," Papers 2402.18324, arXiv.org, revised May 2024.
    8. Aleksandr G. Alekseev & Mikhail V. Sokolov, 2016. "Benchmark-based evaluation of portfolio performance: a characterization," Annals of Finance, Springer, vol. 12(3), pages 409-440, December.
    9. Lu Hong & Scott Page, 1994. "Reducing informational costs in endowment mechanisms," Review of Economic Design, Springer;Society for Economic Design, vol. 1(1), pages 103-117, December.
    10. Subiza, Begona & Peris, Josep E., 1997. "Numerical representation for lower quasi-continuous preferences," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 149-156, April.
    11. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    12. Epstein, Larry G. & Seo, Kyoungwon, 2009. "Subjective states: A more robust model," Games and Economic Behavior, Elsevier, vol. 67(2), pages 408-427, November.
    13. Jay Simon, 2016. "On the existence of altruistic value and utility functions," Theory and Decision, Springer, vol. 81(3), pages 371-391, September.
    14. Romano Isler, 1997. "Semicontinuous utility functions in topological spaces," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 20(1), pages 111-116, June.
    15. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    16. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    17. Sokolov, Mikhail V., 2024. "NPV, IRR, PI, PP, and DPP: A unified view," Journal of Mathematical Economics, Elsevier, vol. 114(C).
    18. Guney, Begum & Richter, Michael, 2018. "Costly switching from a status quo," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 55-70.
    19. Kopylov, Igor, 2016. "Canonical utility functions and continuous preference extensions," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 32-37.
    20. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:etbull:v:11:y:2023:i:2:d:10.1007_s40505-023-00251-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.