IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/20443.html
   My bibliography  Save this paper

Delayed Perfect Monitoring in Repeated Games

Author

Listed:
  • Kinateder, Markus

Abstract

Delayed perfect monitoring in an in�nitely repeated discounted game is studied. A player perfectly observes any other player's action choice with a fixed, but finite delay. The observational delays between different pairs of players are heterogeneous and asymmetric. The Folk Theorem extends to this setup, although for a range of discount factors strictly below 1, the set of belief-free equilibria is reduced under certain conditions. This model applies to any situation in which there is a heterogeneous delay between information generation and the players-reaction to it.

Suggested Citation

  • Kinateder, Markus, 2009. "Delayed Perfect Monitoring in Repeated Games," MPRA Paper 20443, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:20443
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/20443/1/MPRA_paper_20443.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drew Fudenberg & David K. Levine & Satoru Takahashi, 2008. "Perfect public equilibrium when players are patient," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 16, pages 345-367, World Scientific Publishing Co. Pte. Ltd..
    2. Cripps, Martin W. & Mailath, George J. & Samuelson, Larry, 2007. "Disappearing private reputations in long-run relationships," Journal of Economic Theory, Elsevier, vol. 134(1), pages 287-316, May.
    3. Kandori, Michihiro, 2002. "Introduction to Repeated Games with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 1-15, January.
    4. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    5. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    6. Markus Kinateder, 2006. "Repeated Games Played in a Network," UFAE and IAE Working Papers 674.06, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    7. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    8. Glenn Ellison, 1994. "Cooperation in the Prisoner's Dilemma with Anonymous Random Matching," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(3), pages 567-588.
    9. Michihiro Kandori, 1992. "Social Norms and Community Enforcement," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 59(1), pages 63-80.
    10. Markus Kinateder, 2010. "The Repeated Prisoner’s Dilemma in a Network," Working Papers 2010.120, Fondazione Eni Enrico Mattei.
    11. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fudenberg, Drew & Ishii, Yuhta & Kominers, Scott Duke, 2014. "Delayed-response strategies in repeated games with observation lags," Journal of Economic Theory, Elsevier, vol. 150(C), pages 487-514.
    2. Chen, Jiakai, 2021. "LIBOR's poker," Journal of Financial Markets, Elsevier, vol. 55(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Kinateder, 2006. "Repeated Games Played in a Network," UFAE and IAE Working Papers 674.06, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    2. Luca Anderlini & Dino Gerardi & Roger Lagunoff, 2008. "A “Super” Folk Theorem for dynastic repeated games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 357-394, December.
    3. Sugaya, Takuo & Wolitzky, Alexander, 2017. "Bounding equilibrium payoffs in repeated games with private monitoring," Theoretical Economics, Econometric Society, vol. 12(2), May.
    4. Laclau, M., 2014. "Communication in repeated network games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 87(C), pages 136-160.
    5. Yamamoto, Yuichi, 2009. "A limit characterization of belief-free equilibrium payoffs in repeated games," Journal of Economic Theory, Elsevier, vol. 144(2), pages 802-824, March.
    6. Chen, Bo, 2010. "A belief-based approach to the repeated prisoners' dilemma with asymmetric private monitoring," Journal of Economic Theory, Elsevier, vol. 145(1), pages 402-420, January.
    7. Yuichi Yamamoto, 2010. "The use of public randomization in discounted repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 431-443, July.
    8. Contou-Carrère, Pauline & Tomala, Tristan, 2011. "Finitely repeated games with semi-standard monitoring," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 14-21, January.
    9. Balmaceda, Felipe & Escobar, Juan F., 2017. "Trust in cohesive communities," Journal of Economic Theory, Elsevier, vol. 170(C), pages 289-318.
    10. Goldlücke, Susanne & Kranz, Sebastian, 2012. "Infinitely repeated games with public monitoring and monetary transfers," Journal of Economic Theory, Elsevier, vol. 147(3), pages 1191-1221.
    11. Laclau, M., 2013. "Repeated games with local monitoring and private communication," Economics Letters, Elsevier, vol. 120(2), pages 332-337.
    12. Blume, Andreas & Heidhues, Paul, 2006. "Private monitoring in auctions," Journal of Economic Theory, Elsevier, vol. 131(1), pages 179-211, November.
    13. Kimmo Berg & Markus Kärki, 2018. "Critical Discount Factor Values in Discounted Supergames," Games, MDPI, vol. 9(3), pages 1-17, July.
    14. Laclau, Marie & Tomala, Tristan, 2017. "Repeated games with public deterministic monitoring," Journal of Economic Theory, Elsevier, vol. 169(C), pages 400-424.
    15. Michihiro Kandori, 2011. "Weakly Belief‐Free Equilibria in Repeated Games With Private Monitoring," Econometrica, Econometric Society, vol. 79(3), pages 877-892, May.
    16. Hasker, Kevin, 2000. "Social Norms and Choice: A Weak Folk Theorem for Repeated Matching Games," Working Papers 2000-10, Rice University, Department of Economics.
    17. Joyee Deb & Jin Li & Arijit Mukherjee, 2015. "Relational Contracts with Subjective Peer Evaluations," Cowles Foundation Discussion Papers 1995, Cowles Foundation for Research in Economics, Yale University.
    18. Luca Anderlini (Georgetown University), Dino Gerardi (Yale University), Roger Lagunoff (Georgetown University), 2004. "The Folk Theorem in Dynastic Repeated Games," Working Papers gueconwpa~04-04-09, Georgetown University, Department of Economics.
    19. Daron Acemoglu & Alexander Wolitzky, 2015. "Sustaining Cooperation: Community Enforcement vs. Specialized Enforcement," Levine's Bibliography 786969000000001179, UCLA Department of Economics.
    20. Goeschl, Timo & Jarke, Johannes, 2017. "Trust, but verify? Monitoring, inspection costs, and opportunism under limited observability," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 320-330.

    More about this item

    Keywords

    Repeated Game; Delayed Perfect Monitoring; Folk Theorem;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.