IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/16452.html
   My bibliography  Save this paper

Normality Testing- A New Direction

Author

Listed:
  • Islam, Tanweer ul

Abstract

This paper is concerned with the evaluation of the performance of the normality tests to ensure the validity of the t-statistics used for assessing significance of regressors in a regression model. For this purpose, we have explored 40 distributions to find the most damaging distribution on the t-statistic. Power comparisons are conducted to find the best performing test against these distributions. It is found that Anderson-Darling statistic is the best option among the five normality tests, Jarque-Bera, Shapiro-Francia, D’Agostino & Pearson, Anderson-Darling & Lilliefors.

Suggested Citation

  • Islam, Tanweer ul, 2008. "Normality Testing- A New Direction," MPRA Paper 16452, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:16452
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/16452/1/MPRA_paper_16452.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartolucci, F. & Scaccia, L., 2005. "The use of mixtures for dealing with non-normal regression errors," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 821-834, April.
    2. Thorsten Thadewald & Herbert Buning, 2007. "Jarque-Bera Test and its Competitors for Testing Normality - A Power Comparison," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 87-105.
    3. Zaman, Asad & Rousseeuw, Peter J. & Orhan, Mehmet, 2001. "Econometric applications of high-breakdown robust regression techniques," Economics Letters, Elsevier, vol. 71(1), pages 1-8, April.
    4. Jean-Marie Dufour & Abdeljelil Farhat & Lucien Gardiol & Lynda Khalaf, 1998. "Simulation-based finite sample normality tests in linear regressions," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 154-173.
    5. Onder, A. Ozlem & Zaman, Asad, 2005. "Robust tests for normality of errors in regression models," Economics Letters, Elsevier, vol. 86(1), pages 63-68, January.
    6. Gel, Yulia R. & Miao, Weiwen & Gastwirth, Joseph L., 2007. "Robust directed tests of normality against heavy-tailed alternatives," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2734-2746, February.
    7. Bonett, Douglas G. & Seier, Edith, 2002. "A test of normality with high uniform power," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 435-445, September.
    8. Yanagihara, Hirokazu, 2003. "Asymptotic expansion of the null distribution of test statistic for linear hypothesis in nonnormal linear model," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 222-246, February.
    9. Urzua, Carlos M., 1996. "On the correct use of omnibus tests for normality," Economics Letters, Elsevier, vol. 53(3), pages 247-251, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sannegadu Rajesh & Gunesh Raj & Seethiah Dhuvandranand & Dookhony-Ramphul Kiran, 2019. "Factors Influencing Customers’ Attitude Towards Sms Advertisement: Evidence From Mauritius," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(2), pages 141-159, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poitras, Geoffrey, 2006. "More on the correct use of omnibus tests for normality," Economics Letters, Elsevier, vol. 90(3), pages 304-309, March.
    2. Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "An Exhaustive Power Comparison of Normality Tests," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    3. repec:jss:jstsof:28:i03 is not listed on IDEAS
    4. Aldo Goia & Ernesto Salinelli & Pascal Sarda, 2015. "A new powerful version of the BUS test of normality," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 449-474, September.
    5. Charalampos Basdekis & Apostolos Christopoulos & Alexandros Gkolfinopoulos & Ioannis Katsampoxakis, 2022. "VaR as a risk management framework for the spot and futures tanker markets," Operational Research, Springer, vol. 22(4), pages 4287-4352, September.
    6. Czesław Domański & Piotr Szczepocki, 2020. "Comparison of selected tests for univariate normality based on measures of moments," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 151-178, December.
    7. Hui, Wallace & Gel, Yulia R. & Gastwirth, Joseph L., 2008. "lawstat: An R Package for Law, Public Policy and Biostatistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i03).
    8. Gel, Yulia R. & Gastwirth, Joseph L., 2008. "A robust modification of the Jarque-Bera test of normality," Economics Letters, Elsevier, vol. 99(1), pages 30-32, April.
    9. Shigekazu Nakagawa & Hiroki Hashiguchi & Naoto Niki, 2012. "Improved omnibus test statistic for normality," Computational Statistics, Springer, vol. 27(2), pages 299-317, June.
    10. Zanini, Fabio C. & Irwin, Scott H. & Schnitkey, Gary D. & Sherrick, Bruce J., 2000. "Estimating Farm-Level Yield Distributions For Corn And Soybeans In Illinois," 2000 Annual meeting, July 30-August 2, Tampa, FL 21720, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    12. Niclas Berggren & Mikael Elinder, 2012. "Is tolerance good or bad for growth?," Public Choice, Springer, vol. 150(1), pages 283-308, January.
    13. William Ginn, 2022. "Climate Disasters and the Macroeconomy: Does State-Dependence Matter? Evidence for the US," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 141-161, March.
    14. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    15. Hayley Jang & Young Hoon Lee & Rodney Fort, 2019. "Winning In Professional Team Sports: Historical Moments," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 103-120, January.
    16. Michele Aquaro & Pavel Čížek, 2014. "Robust estimation of dynamic fixed-effects panel data models," Statistical Papers, Springer, vol. 55(1), pages 169-186, February.
    17. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    18. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    19. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    20. Urzua, Carlos M., 2000. "A simple and efficient test for Zipf's law," Economics Letters, Elsevier, vol. 66(3), pages 257-260, March.
    21. Pavel Cizek, 2001. "Robust Estimation with Discrete Explanatory Variables," CERGE-EI Working Papers wp183, The Center for Economic Research and Graduate Education - Economics Institute, Prague.

    More about this item

    Keywords

    Normality test; power of the test; t-statistic;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:16452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.