The use of mixtures for dealing with non-normal regression errors
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Saverio Ranciati & Giuliano Galimberti & Gabriele Soffritti, 2019. "Bayesian variable selection in linear regression models with non-normal errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 323-358, June.
- Maria Karlsson & Thomas Laitila, 2014. "Finite mixture modeling of censored regression models," Statistical Papers, Springer, vol. 55(3), pages 627-642, August.
- Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
- Leporia, Benedetto & Geuna, Aldo & Mira, Antonietta, 2018.
"Scientific Output of US and European Universities Scales Super-linearly with Resources,"
Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio
201806, University of Turin.
- Benedetto Lepori & Aldo Geuna & Antonietta Mira, 2018. "Scientific Output of US and European Universities Scales Super-Linearly with Resources," SPRU Working Paper Series 2018-22, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Leporia, Benedetto & Geuna, Aldo & Mira, Antonietta, 2018. "Scientific Output of US and European Universities Scales Super-linearly with Resources," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201818, University of Turin.
- Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
- Wang, Shangshan & Xiang, Liming, 2017. "Two-layer EM algorithm for ALD mixture regression models: A new solution to composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 136-154.
- Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
- Marilena Furno, 2023. "Computing Finite Mixture Estimators in the Tails," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 267-297, July.
- Usta, Ilhan & Kantar, Yeliz Mert, 2011. "On the performance of the flexible maximum entropy distributions within partially adaptive estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2172-2182, June.
- Steven Caudill & James Long, 2010. "Do former athletes make better managers? Evidence from a partially adaptive grouped-data regression model," Empirical Economics, Springer, vol. 39(1), pages 275-290, August.
- Chee, Chew-Seng & Seo, Byungtae, 2020. "Semiparametric estimation for linear regression with symmetric errors," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Katherine G. Yewell & Steven B. Caudill & Franklin G. Mixon, Jr., 2014. "Referee Bias and Stoppage Time in Major League Soccer: A Partially Adaptive Approach," Econometrics, MDPI, vol. 2(1), pages 1-19, February.
- Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.
- Benedetto Lepori & Aldo Geuna & Antonietta Mira, 2019. "Scientific output scales with resources. A comparison of US and European universities," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-18, October.
- Giovanni Mellace & Roberto Rocci, 2011. "Principal Stratification in sample selection problems with non normal error terms," CEIS Research Paper 194, Tor Vergata University, CEIS, revised 02 May 2011.
- Islam, Tanweer ul, 2008. "Normality Testing- A New Direction," MPRA Paper 16452, University Library of Munich, Germany.
- Giuliano Galimberti & Gabriele Soffritti, 2020. "Seemingly unrelated clusterwise linear regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 235-260, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:48:y:2005:i:4:p:821-834. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.