IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/123064.html
   My bibliography  Save this paper

Tulot, eläke ja eläkeikä: empiirisiä tuloksia vuoden 1947 ikäkohortin kohdalta
[Incomes, pension and retirement age: empirical results with the birth year 1947 cohort]

Author

Listed:
  • Linden, Mikael
  • Väänänen, Niko

Abstract

Tutkimuksen tavoitteena on arvioida, nostiko vuoden 2005 eläkejärjestelmän ns. superkarttumasääntö eläköitymisikää 63 ikävuoden jälkeen. Tarkastelun kohteena on vuoden 1947 syntymäkohortin siirtyminen vuosina 2007-2015 vanhuuseläkkeelle. Superkarttuma mahdollisti paremman eläketason työntekoa jatkamalla ikävuoden 63 jälkeen. Tavoitteena oli, että eläkeikä nousisi. Tällöin talousteorian mukainen tulos, että korkea työtulo- ja eläketaso johtavat eläkeiän laskuun, ei välttämättä toteudu. Muuttujakolmikon {tulot, eläke, eläkeikä} rakenteellista riippuvuutta tutkitaan aluksi systeemimallin estimoinnin kautta. Saatuja tuloksia tarkennetaan tämän jälkeen IV-estimoinnilla eläkeiän kohdalta. Lopuksi tarkastellaan eläkeikämallin tuloksia uuden KLS-estimaattorin yhteydessä, joka huomioi tulo- ja eläkemuuttujien endogeenisuuden suoraan OLS-estimoinnin yhteydessä. Saavutetut tulokset tukevat päätelmää, että superkarttumasääntö johti eläkeiän nousuun keskimäärin n. 1.3 vuotta negatiivisesta tulovaikutuksesta huolimatta. Tulos antaa lisävalaistusta yksilötason eläkeiän määräytymisestä. Tästä voi olla hyötyä eläkejärjestelmän edelleen kehittämisen yhteydessä.

Suggested Citation

  • Linden, Mikael & Väänänen, Niko, 2024. "Tulot, eläke ja eläkeikä: empiirisiä tuloksia vuoden 1947 ikäkohortin kohdalta [Incomes, pension and retirement age: empirical results with the birth year 1947 cohort]," MPRA Paper 123064, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:123064
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/123064/1/MPRA_paper_123064.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gary S. Fields & Olivia S. Mitchell, 1984. "Economic Determinants of the Optimal Retirement Age: An Empirical Investigation," Journal of Human Resources, University of Wisconsin Press, vol. 19(2), pages 245-262.
    2. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    3. Angrist, Joshua & Kolesár, Michal, 2024. "One instrument to rule them all: The bias and coverage of just-ID IV," Journal of Econometrics, Elsevier, vol. 240(2).
    4. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    5. Kiviet, Jan F., 2023. "Instrument-free inference under confined regressor endogeneity and mild regularity," Econometrics and Statistics, Elsevier, vol. 25(C), pages 1-22.
    6. Linden, Mikael, 2024. "Optimal Retirement Age: Death Hazard Rate Approach," MPRA Paper 120786, University Library of Munich, Germany.
    7. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05c, School of Economics, The University of New South Wales.
    8. Cremer, Helmuth & Lozachmeur, Jean-Marie & Pestieau, Pierre, 2004. "Social security, retirement age and optimal income taxation," Journal of Public Economics, Elsevier, vol. 88(11), pages 2259-2281, September.
    9. Sebastian Kripfganz & Jan F. Kiviet, 2021. "kinkyreg: Instrument-free inference for linear regression models with endogenous regressors," Stata Journal, StataCorp LLC, vol. 21(3), pages 772-813, September.
    10. Vincent P. Crawford & David M. Lilien, 1981. "Social Security and the Retirement Decision," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 96(3), pages 505-529.
    11. Young, Alwyn, 2022. "Consistency without Inference: Instrumental Variables in Practical Application," European Economic Review, Elsevier, vol. 147(C).
    12. Gruber, Jonathan & Kanninen, Ohto & Ravaska, Terhi, 2022. "Relabeling, retirement and regret," Journal of Public Economics, Elsevier, vol. 211(C).
    13. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    14. Young, Alwyn, 2022. "Consistency without inference: instrumental variables in practical application," LSE Research Online Documents on Economics 115011, London School of Economics and Political Science, LSE Library.
    15. Chen, An & Hentschel, Felix & Steffensen, Mogens, 2021. "On retirement time decision making," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 107-129.
    16. Mao, Hong & Ostaszewski, Krzysztof M. & Wang, Yuling, 2014. "Optimal retirement age, leisure and consumption," Economic Modelling, Elsevier, vol. 43(C), pages 458-464.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linden, Mikael, 2024. "Optimal Retirement Age: Death Hazard Rate Approach," MPRA Paper 120786, University Library of Munich, Germany.
    2. Ankel-Peters, Jörg & Vance, Colin & Bensch, Gunther, 2022. "Spotlight on researcher decisions – Infrastructure evaluation, instrumental variables, and first-stage specification screening," OSF Preprints sw6kd_v1, Center for Open Science.
    3. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    4. Angrist, Joshua & Kolesár, Michal, 2024. "One instrument to rule them all: The bias and coverage of just-ID IV," Journal of Econometrics, Elsevier, vol. 240(2).
    5. Bensch, Gunther & Ankel-Peters, Jörg & Vance, Colin, 2023. "Spotlight on Researcher Decisions – Infrastructure Evaluation, Instrumental Variables, and Specification Screening," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277703, Verein für Socialpolitik / German Economic Association.
    6. Ankel-Peters, Jörg & Vance, Colin & Bensch, Gunther, 2022. "Spotlight on researcher decisions – Infrastructure evaluation, instrumental variables, and first-stage specification screening," OSF Preprints sw6kd_v1, Center for Open Science.
    7. Jens Klooster & Mikhail Zhelonkin, 2024. "Outlier robust inference in the instrumental variable model with applications to causal effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 86-106, January.
    8. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    9. Nguyen, Cuong Viet & Tran, Tuyen Quang & Van Vu, Huong, 2024. "The long-term effects of war on foreign direct investment and economic development: evidence from Vietnam," Journal of Urban Economics, Elsevier, vol. 143(C).
    10. Romagnoli, Matteo, 2024. "Clean sweep: Electricity liberalization and the direction of technological change in the electricity sector," Research Policy, Elsevier, vol. 53(8).
    11. Mao, Hong & Ostaszewski, Krzysztof M. & Wang, Yuling, 2014. "Optimal retirement age, leisure and consumption," Economic Modelling, Elsevier, vol. 43(C), pages 458-464.
    12. Michael Keane & Timothy Neal, 2021. "Robust Inference for the Frisch Labor Supply Elasticity," Discussion Papers 2021-07b, School of Economics, The University of New South Wales.
    13. Meng Zhao, 2024. "Does free cancer screening make a difference? Evidence from the effects of a free-coupon program in Japan," The Japanese Economic Review, Springer, vol. 75(4), pages 739-778, December.
    14. Borja Larrain & Peter Roosenboom & Giorgo Sertsios & Francisco Urzúa, 2024. "Ownership Concentration and Firm Value: New Evidence from Owner Stakes in IPOs," Management Science, INFORMS, vol. 70(7), pages 4441-4464, July.
    15. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.
    16. Cuong Viet Nguyen & Tuyen Quang Tran & Huong Van Vu, 2024. "Does foreign direct investment benefit local firms? Evidence from a natural experiment study," The World Economy, Wiley Blackwell, vol. 47(3), pages 1191-1246, March.
    17. Даниелян, Владимир, 2016. "Детерминанты Пенсионного Возраста: Обзор Исследований [Determinants of Retirement Age: A Review of Research]," MPRA Paper 73865, University Library of Munich, Germany.
    18. Bao, Yanxi & Liao, Tingxuan, 2024. "Multidimensional poverty and growth: Evidence from India 1998–2021," Economic Modelling, Elsevier, vol. 130(C).
    19. Juan R. Hernández & Mateo Hoyos & Daniel Ventosa-Santaulària, 2024. "Monetary Policy in Emerging Markets under Global Uncertainty," Working Papers DTE 634, CIDE, División de Economía.
    20. Laurence J. Kotlikoff & David A. Wise, 1988. "Pension Backloading, Wage Taxes, and Work Disincentives," NBER Chapters, in: Tax Policy and the Economy: Volume 2, pages 161-196, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Incomes; pensions; accrual rate; retirement age;
    All these keywords.

    JEL classification:

    • J22 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Time Allocation and Labor Supply
    • J26 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Retirement; Retirement Policies
    • J32 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Nonwage Labor Costs and Benefits; Retirement Plans; Private Pensions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:123064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.