IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/118572.html
   My bibliography  Save this paper

Valoración de derivados europeos con mixtura de distribuciones Weibull
[Valuation for European derivatives with mixture-Weibull distributions]

Author

Listed:
  • Molina Barreto, Andrés Mauricio
  • Jiménez Moscoso, José Alfredo

Abstract

The Black-Scholes valuation model for European options is widely used in the stock markets due to its easy implementation. However, the model is not accurate for different assets whose dynamics do not follow those of a lognormal distribution, so it is necessary to investigate new distributions to price different options written on various underlying assets. Several researchers have worked on new valuation formulas, assuming different distributions for either the price of the underlying asset or for the return of the same. This paper presents two methods for European derivatives valuation, one of them, modifying the formula using a Weibull distribution with two parameters given by Savickas (2002) adding two new parameters (scale and location), and another assuming that the underlying distribution is a Weibull mixture. Comparisons are also presented with these models against existing models such as the Black-Scholes model and Savickas with a simple Weibull distribution.

Suggested Citation

  • Molina Barreto, Andrés Mauricio & Jiménez Moscoso, José Alfredo, 2014. "Valoración de derivados europeos con mixtura de distribuciones Weibull [Valuation for European derivatives with mixture-Weibull distributions]," MPRA Paper 118572, University Library of Munich, Germany, revised 08 Aug 2014.
  • Handle: RePEc:pra:mprapa:118572
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/118572/1/Molina-Jimenez.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Savickas, 2002. "A Simple Option‐Pricing Formula," The Financial Review, Eastern Finance Association, vol. 37(2), pages 207-226, May.
    2. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    3. José Alfredo Jiménez & Viswanathan Arunachalam & Gregorio Manuel Serna, 2014. "Option pricing based on the generalised Tukey distribution," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 3(3), pages 191-221.
    4. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    7. Robert Savickas, 2005. "Evidence On Delta Hedging And Implied Volatilities For The Black‐Scholes, Gamma, And Weibull Option Pricing Models," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(2), pages 299-317, June.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Fiorentini & Angel León & Gonzalo Rubio, "undated". "Short-term options with stochastic volatility: Estimation and empirical performance," Studies on the Spanish Economy 02, FEDEA.
    2. Fiorentini, Gabriele & Leon, Angel & Rubio, Gonzalo, 2002. "Estimation and empirical performance of Heston's stochastic volatility model: the case of a thinly traded market," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 225-255, March.
    3. Don M. Chance & Thomas A. Hanson & Weiping Li & Jayaram Muthuswamy, 2017. "A bias in the volatility smile," Review of Derivatives Research, Springer, vol. 20(1), pages 47-90, April.
    4. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    5. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    6. Äijö, Janne, 2008. "Impact of US and UK macroeconomic news announcements on the return distribution implied by FTSE-100 index options," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 242-258.
    7. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    8. Gangadhar Nayak & Subhranshu Sekhar Tripathy & Agbotiname Lucky Imoize & Chun-Ta Li, 2024. "Application of Extended Normal Distribution in Option Price Sensitivities," Mathematics, MDPI, vol. 12(15), pages 1-18, July.
    9. Ben Boukai, 2021. "The Generalized Gamma distribution as a useful RND under Heston's stochastic volatility model," Papers 2108.07937, arXiv.org, revised Aug 2021.
    10. Bodo Herzog & Sufyan Osamah, 2019. "Reverse Engineering of Option Pricing: An AI Application," IJFS, MDPI, vol. 7(4), pages 1-12, November.
    11. Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.
    12. Marie Brière & Kamal Chancari, 2004. "Perception des risques sur les marchés, construction d'un indice élaboré à partir des smiles d'options et test de stratégies," Revue d'économie politique, Dalloz, vol. 114(4), pages 527-555.
    13. Pakorn Aschakulporn & Jin E. Zhang, 2022. "Bakshi, Kapadia, and Madan (2003) risk-neutral moment estimators: A Gram–Charlier density approach," Review of Derivatives Research, Springer, vol. 25(3), pages 233-281, October.
    14. Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2017. "Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options," Central European Economic Journal, Sciendo, vol. 4(51), pages 18-39, December.
    15. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    16. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
    17. Robert Tompkins, 2001. "Implied volatility surfaces: uncovering regularities for options on financial futures," The European Journal of Finance, Taylor & Francis Journals, vol. 7(3), pages 198-230.
    18. Fang, Mingyu & Tan, Ken Seng & Wirjanto, Tony S., 2024. "Valuation of carbon emission allowance options under an open trading phase," Energy Economics, Elsevier, vol. 131(C).
    19. Damir Filipovic & Damien Ackerer & Sergio Pulido, 2018. "The Jacobi Stochastic Volatility Model," Post-Print hal-01338330, HAL.

    More about this item

    Keywords

    Weibull distribution; mixture of Weibull; valuation; European options;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:118572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.