IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v20y2017i1d10.1007_s11147-016-9124-0.html
   My bibliography  Save this article

A bias in the volatility smile

Author

Listed:
  • Don M. Chance

    (Louisiana State University)

  • Thomas A. Hanson

    (Minnesota State University Moorhead)

  • Weiping Li

    (Southwest Jiaotong University
    Oklahoma State University)

  • Jayaram Muthuswamy

    (Kent State University)

Abstract

We show that even if options traded with Black–Scholes–Merton pricing under a known and constant volatility, meaning essentially in perfect markets, one would still obtain smiles, skews, and smirks. We detect this problem by pricing options with a known volatility and reverse engineering to back into the implied volatility from the model price that was derived from the assumed volatility. The returned volatilities follow distinctive patterns resulting from algorithmic choices of the user and the quotation unit of the option. In particular, the common practice of penny pricing on option exchanges results in a significant loss of accuracy in implied volatility. For the most common scenarios faced in practice, the problem primarily exists in short-term options, but it manifests for virtually all cases of moneyness of at least 10 % and often 5 %. While it is theoretically possible to almost eliminate the problem, practical limitations in trading prevent any realistic chance of avoiding this error. It is even more difficult to identify and control the problem when smiles also arise from market imperfections, as is widely accepted. We empirically estimate a very conservative lower bound of the effect at about 16 % of the observed smile for 30-day options. Thus, we document a previously unknown phenomenon that a portion of the volatility smile is not of an economic nature. We provide some best-practice recommendations, including the explicit specification of the algorithmic choices and a warning against using off-the-shelf routines.

Suggested Citation

  • Don M. Chance & Thomas A. Hanson & Weiping Li & Jayaram Muthuswamy, 2017. "A bias in the volatility smile," Review of Derivatives Research, Springer, vol. 20(1), pages 47-90, April.
  • Handle: RePEc:kap:revdev:v:20:y:2017:i:1:d:10.1007_s11147-016-9124-0
    DOI: 10.1007/s11147-016-9124-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11147-016-9124-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-016-9124-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    2. William Barnett & Apostolos Serletis & Demitre Serletis, 2005. "Nonlinear and Complex Dynamics in Real Systems," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 200517, University of Kansas, Department of Economics, revised Sep 2005.
    3. Minqiang Li & Kyuseok Lee, 2011. "An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
    4. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    5. Patrick Dennis & Stewart Mayhew, 2009. "Microstructural biases in empirical tests of option pricing models," Review of Derivatives Research, Springer, vol. 12(3), pages 169-191, October.
    6. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    7. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    8. Schmalensee, Richard & Trippi, Robert R, 1978. "Common Stock Volatility Expectations Implied by Option Premia," Journal of Finance, American Finance Association, vol. 33(1), pages 129-147, March.
    9. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    10. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    11. Hentschel, Ludger, 2003. "Errors in Implied Volatility Estimation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(4), pages 779-810, December.
    12. Mark Broadie & Mikhail Chernov & Michael Johannes, 2009. "Understanding Index Option Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4493-4529, November.
    13. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    14. Stefan Gerhold, 2012. "Can there be an explicit formula for implied volatility?," Papers 1211.4978, arXiv.org.
    15. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    16. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    17. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    18. Michael A. Kelly, 2006. "Faster Implied Volatilities via the Implicit Function Theorem," The Financial Review, Eastern Finance Association, vol. 41(4), pages 589-597, November.
    19. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    20. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    21. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    22. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    23. Chance, Don M, 1996. "A Generalized Simple Formula to Compute the Implied Volatility," The Financial Review, Eastern Finance Association, vol. 31(4), pages 859-867, November.
    24. Corrado, Charles J. & Miller, Thomas Jr., 1996. "A note on a simple, accurate formula to compute implied standard deviations," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 595-603, April.
    25. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    26. Vagnani, Gianluca, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 103-118, October.
    27. Chambers, Donald R & Nawalkha, Sanjay K, 2001. "An Improved Approach to Computing Implied Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 89-99, August.
    28. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    29. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    30. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    31. repec:bla:jfinan:v:59:y:2004:i:2:p:711-753 is not listed on IDEAS
    32. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    33. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxuan Xia & Zhenyu Cui, 2018. "An exact and explicit implied volatility inversion formula," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    3. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    4. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    5. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    6. Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    7. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    8. Minqiang Li & Kyuseok Lee, 2011. "An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
    9. Fiorentini, Gabriele & Leon, Angel & Rubio, Gonzalo, 2002. "Estimation and empirical performance of Heston's stochastic volatility model: the case of a thinly traded market," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 225-255, March.
    10. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    11. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    12. Robert Tompkins, 2001. "Implied volatility surfaces: uncovering regularities for options on financial futures," The European Journal of Finance, Taylor & Francis Journals, vol. 7(3), pages 198-230.
    13. Tao Li, 2013. "Investors' Heterogeneity and Implied Volatility Smiles," Management Science, INFORMS, vol. 59(10), pages 2392-2412, October.
    14. Chen, Song Xi & Xu, Zheng, 2014. "On implied volatility for options—Some reasons to smile and more to correct," Journal of Econometrics, Elsevier, vol. 179(1), pages 1-15.
    15. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    16. Jitka Hilliard & Wei Li, 2014. "Volatilities implied by price changes in the S&P 500 options and futures contracts," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 599-626, May.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    19. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    20. Chen, Gang & Roberts, Matthew C. & Roe, Brian E., 2005. "Forecasting Livestock Feed Cost Risks Using Futures and Options," 2005 Conference, April 18-19, 2005, St. Louis, Missouri 19048, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.

    More about this item

    Keywords

    Black–Scholes–Merton model; Option pricing; Implied volatility; Volatility; Volatility smile; Computational finance; Algorithmic finance; Options;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:20:y:2017:i:1:d:10.1007_s11147-016-9124-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.