IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v30y2014icp1019-1034.html
   My bibliography  Save this article

A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results

Author

Listed:
  • Palzer, Andreas
  • Henning, Hans-Martin

Abstract

A clear consensus exists in German society that renewable energy resources have to play a dominant role in the future German energy supply system. However, many questions are still under discussion; for instance the relevance of the different technologies such as photovoltaic systems and wind energy converters installed offshore in the North Sea and the Baltic Sea. Concerns also exist about the cost of a future energy system mainly based on renewable energy. In the work presented here we tried to answer some of those questions. Guiding questions for this study were: (1) is it possible to meet the German energy demand with 100% renewable energy, considering the available technical potential of the main renewable energy resources? (2) what is the overall annual cost of such an energy system once it has been implemented? (3) what is the best combination of renewable energy converters, storage units, energy converters and energy-saving measures? In order to answer these questions, we carried out many simulation calculations using REMod-D, a model we developed for this purpose. This model is described in Part I of this publication. To date this model covers only part of the energy system, namely the electricity and heat sectors, which correspond to about 62% of Germany's current energy demand. The main findings of our work indicate that it is possible to meet the total electricity and heat demand (space heating, hot water) of the entire building sector with 100% renewable energy within the given technical limits. This is based on the assumption that the heat demand of the building sector is significantly reduced by at least 60% or more compared to today's demand. Another major result of our analysis shows that – once the transformation of the energy system has been completed – supplying electricity and heat only from renewables is no more expensive than the existing energy supply.

Suggested Citation

  • Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
  • Handle: RePEc:eee:rensus:v:30:y:2014:i:c:p:1019-1034
    DOI: 10.1016/j.rser.2013.11.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113007818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.11.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:30:y:2014:i:c:p:1019-1034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.