IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/109557.html
   My bibliography  Save this paper

Наукастинг Темпов Роста Стоимостных Объемов Экспорта И Импорта По Товарным Группам
[Nowcasting the growth rates of the export and import by commodity groups]

Author

Listed:
  • Maiorova, Ksenia
  • Fokin, Nikita

Abstract

In this paper we consider a set of machine learning and econometrics models, namely: Elastic Net, Random Forest, XGBoost and SSVS as applied to nowcasting a large dataset of USD volumes of Russian exports and imports by commodity group. We use lags of the volumes of export and import commodity groups, prices for some imported and exported goods and other variables, due to which the curse of dimensionality becomes quite acute. The models we use are very popular and have proven themselves well in forecasting in the presence of the curse of dimensionality, when the number of model parameters exceeds the number of observations. The best model is the weighted model of machine learning methods, which outperforms the ARIMA benchmark model in nowcasting the volume of both exports and imports. In the case of the largest commodities groups, we often get a significantly more accurate nowcasts then ARIMA model, according to the Diebold-Mariano test. In addition, nowcasts turns out to be quite close to the historical forecasts of the Bank of Russia, being constructed in similar conditions.

Suggested Citation

  • Maiorova, Ksenia & Fokin, Nikita, 2020. "Наукастинг Темпов Роста Стоимостных Объемов Экспорта И Импорта По Товарным Группам [Nowcasting the growth rates of the export and import by commodity groups]," MPRA Paper 109557, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:109557
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/109557/1/MPRA_paper_109557.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    2. Clarida, Richard H, 1996. "Consumption, Import Prices, and the Demand for Imported Consumer Durables: A Structural Econometric Investigation," The Review of Economics and Statistics, MIT Press, vol. 78(3), pages 369-374, August.
    3. Polbin, Andrey & Fokin, Nikita, 2020. "Modeling the dynamics of import in the Russian Federation using the error correction model," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 88-112.
    4. Abdelhak Senhadji, 1998. "Time-Series Estimation of Structural Import Demand Equations: A Cross-Country Analysis," IMF Staff Papers, Palgrave Macmillan, vol. 45(2), pages 236-268, June.
    5. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    6. Abdelhak S. Senhadji & Claudio E. Montenegro, 1999. "Time Series Analysis of Export Demand Equations: A Cross-Country Analysis," IMF Staff Papers, Palgrave Macmillan, vol. 46(3), pages 1-2.
    7. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Ivan Baybuza, 2018. "Inflation Forecasting Using Machine Learning Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 42-59, December.
    10. Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
    11. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    12. Saulius Jokubaitis & Dmitrij Celov & Remigijus Leipus, 2019. "Sparse structures with LASSO through Principal Components: forecasting GDP components in the short-run," Papers 1906.07992, arXiv.org, revised Oct 2020.
    13. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    2. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    3. Sakemoto, Ryuta, 2021. "Economic Evaluation of Cryptocurrency Investment," MPRA Paper 108283, University Library of Munich, Germany.
    4. Ksenia Mayorova & Nikita Fokin, 2021. "Nowcasting Growth Rates of Russia's Export and Import by Commodity Group," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 34-48, September.
    5. Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
    6. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    7. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    8. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
    9. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    10. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    11. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    12. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    13. Lin, Hai & Tao, Xinyuan & Wu, Chunchi, 2022. "Forecasting earnings with combination of analyst forecasts," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 133-159.
    14. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    15. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    16. Alexandre Aspremont & Simon Ben Arous & Jean-Charles Bricongne & Benjamin Lietti & Baptiste Meunier, 2023. "Satellites Turn “Concrete”: Tracking Cement with Satellite Data and Neural Networks," Working papers 916, Banque de France.
    17. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    18. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    19. Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024. "Search and Predictability of Prices in the Housing Market," Management Science, INFORMS, vol. 70(1), pages 415-438, January.
    20. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.

    More about this item

    Keywords

    наукастинг; внешняя торговля; проклятие размерности; машинное обучение; российская экономика;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • F17 - International Economics - - Trade - - - Trade Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:109557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.