IDEAS home Printed from https://ideas.repec.org/p/pot/statdp/57.html
   My bibliography  Save this paper

Herausforderungen des finanziellen Risikomanagements: Eine empirische Untersuchung des Value at Risk-Ansatzes in Stresssituationen

Author

Listed:
  • Till Barz
  • Andreas Nastansky

    (Hochschule für Wirtschaft und Recht (HWR) Berlin)

Abstract

Die Quantifizierung und Begrenzung extremer Wertverluste sind von zentraler Bedeutung für das finanzielle Risikomanagement. Besonders während volatiler Marktphasen tendieren traditionelle Risikomaße dazu, Risiken fehlerhaft einzuschätzen. Die Arbeit untersucht die Risikomaße Value at Risk (VaR) und Expected Shortfall (ES) hinsichtlich ihrer Fähigkeit, Verlustpotenziale während Stresssituationen präzise abzubilden. Dazu wird die Prognosefähigkeit dieser Maße unter verschiedenen Verteilungsannahmen und Gewichtungsmethoden analysiert. Unter anderem erfolgt eine systematische Überprüfung mittels Backtesting für den Untersuchungszeitraum. Die Analyse zeigt, dass Modelle mit einer t-Verteilung und einer exponentiellen Gewichtung historischer Daten eine höhere Vorhersagegenauigkeit aufweisen. Modelle mit Normalverteilungsannahme sind in Krisenzeiten besonders anfällig für Fehlprognosen. Alle untersuchten Modelle passen sich verzögert an veränderte Marktsituationen an, was zu einer anfänglichen Unterschätzung und späteren Überschätzung der Risiken führt. Die Anpassungslatenz variiert dabei je nach gewählter Gewichtung der historischen Daten. Implikationen für das Risikomanagement beinhalten eine regelmäßige Modellüberprüfung und die Implementierung umfassender Stresstests, um systematische Risikounterbewertungen zu vermeiden. Die Ergebnisse verdeutlichen die Notwendigkeit dynamischer Risikomodelle, die sich an volatile Marktbedingungen anpassen, um die finanzielle Stabilität der Kreditinstitute langfristig zu sichern.

Suggested Citation

  • Till Barz & Andreas Nastansky, 2024. "Herausforderungen des finanziellen Risikomanagements: Eine empirische Untersuchung des Value at Risk-Ansatzes in Stresssituationen," Statistische Diskussionsbeiträge 57, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
  • Handle: RePEc:pot:statdp:57
    DOI: 10.25932/publishup-66666
    as

    Download full text from publisher

    File URL: https://doi.org/10.25932/publishup-66666
    Download Restriction: no

    File URL: https://libkey.io/10.25932/publishup-66666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Ding & Hiroyoki Miyake & Hao Zou, 2011. "Asymmetric correlations in equity returns: a fundamental-based explanation," Applied Financial Economics, Taylor & Francis Journals, vol. 21(6), pages 389-399.
    2. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    3. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    4. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    5. Peter Bernholz & Ernst Baltensperger & David Iselin & Oliver Landmann & Rudolf Minsch, 2015. "Der »Franken-Schock«: Die Freigabe des Schweizer Franken –wer gewinnt und wer verliert?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(05), pages 03-19, March.
    6. Najah Attig & Oumar Sy, 2023. "Diversification during Hard Times," Financial Analysts Journal, Taylor & Francis Journals, vol. 79(2), pages 45-64, April.
    7. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    8. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    9. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vatis Christian Kemezang & André Ilaire Djou & Ivette Gnitedem Keubeng, 2024. "Measuring market risk with GARCH models under Basel III: selection and application to German firms," SN Business & Economics, Springer, vol. 4(10), pages 1-30, October.
    2. Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
    3. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    4. Luis Fernando Melo Velandia & Oscar reinaldo Becerra Camargo, 2005. "Medidas de Riesgo, Características y Técnicas de Medición: Una Aplicación del VAR y el ES a la Tasa Interbancaria de Colombia," Borradores de Economia 343, Banco de la Republica de Colombia.
    5. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    6. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    7. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    8. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    9. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    10. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    11. Chung, Y. Peter & Hong, Hyun A. & Kim, S. Thomas, 2019. "What causes the asymmetric correlation in stock returns?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 190-212.
    12. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    13. Guobin Fan & Eric Girardin & Wong K. Wong & Yong Zeng, 2015. "The Risk of Individual Stocks’ Tail Dependence with the Market and Its Effect on Stock Returns," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-17, November.
    14. Klein, Arne C., 2013. "Time-variations in herding behavior: Evidence from a Markov switching SUR model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 291-304.
    15. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    16. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management," Energy Economics, Elsevier, vol. 42(C), pages 332-342.
    17. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    18. Paula V. Tofoli & Flavio A. Ziegelmann & Osvaldo Candido, 2017. "A Comparison Study of Copula Models for Europea Financial Index Returns," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(10), pages 155-178, October.
    19. Wong, Woon K., 2008. "Backtesting trading risk of commercial banks using expected shortfall," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1404-1415, July.
    20. Jiangze Du & Xizhuo Chen & Jincheng Gong & Xiao Lin & Kin Keung Lai, 2023. "Analysis of stock markets risk spillover with copula models under the background of Chinese financial opening," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3997-4019, October.

    More about this item

    Keywords

    Backtesting; Historische Simulation; Risikomanagement; Value at Risk; Varianz-Kovarianz-Methode;
    All these keywords.

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pot:statdp:57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Winkler (email available below). General contact details of provider: https://edirc.repec.org/data/lspotde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.