IDEAS home Printed from https://ideas.repec.org/p/pot/statdp/57.html
   My bibliography  Save this paper

Herausforderungen des finanziellen Risikomanagements: Eine empirische Untersuchung des Value at Risk-Ansatzes in Stresssituationen

Author

Listed:
  • Till Barz
  • Andreas Nastansky

    (Hochschule für Wirtschaft und Recht (HWR) Berlin)

Abstract

Die Quantifizierung und Begrenzung extremer Wertverluste sind von zentraler Bedeutung für das finanzielle Risikomanagement. Besonders während volatiler Marktphasen tendieren traditionelle Risikomaße dazu, Risiken fehlerhaft einzuschätzen. Die Arbeit untersucht die Risikomaße Value at Risk (VaR) und Expected Shortfall (ES) hinsichtlich ihrer Fähigkeit, Verlustpotenziale während Stresssituationen präzise abzubilden. Dazu wird die Prognosefähigkeit dieser Maße unter verschiedenen Verteilungsannahmen und Gewichtungsmethoden analysiert. Unter anderem erfolgt eine systematische Überprüfung mittels Backtesting für den Untersuchungszeitraum. Die Analyse zeigt, dass Modelle mit einer t-Verteilung und einer exponentiellen Gewichtung historischer Daten eine höhere Vorhersagegenauigkeit aufweisen. Modelle mit Normalverteilungsannahme sind in Krisenzeiten besonders anfällig für Fehlprognosen. Alle untersuchten Modelle passen sich verzögert an veränderte Marktsituationen an, was zu einer anfänglichen Unterschätzung und späteren Überschätzung der Risiken führt. Die Anpassungslatenz variiert dabei je nach gewählter Gewichtung der historischen Daten. Implikationen für das Risikomanagement beinhalten eine regelmäßige Modellüberprüfung und die Implementierung umfassender Stresstests, um systematische Risikounterbewertungen zu vermeiden. Die Ergebnisse verdeutlichen die Notwendigkeit dynamischer Risikomodelle, die sich an volatile Marktbedingungen anpassen, um die finanzielle Stabilität der Kreditinstitute langfristig zu sichern.

Suggested Citation

  • Till Barz & Andreas Nastansky, 2024. "Herausforderungen des finanziellen Risikomanagements: Eine empirische Untersuchung des Value at Risk-Ansatzes in Stresssituationen," Statistische Diskussionsbeiträge 57, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
  • Handle: RePEc:pot:statdp:57
    DOI: 10.25932/publishup-66666
    as

    Download full text from publisher

    File URL: https://doi.org/10.25932/publishup-66666
    Download Restriction: no

    File URL: https://libkey.io/10.25932/publishup-66666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Ding & Hiroyoki Miyake & Hao Zou, 2011. "Asymmetric correlations in equity returns: a fundamental-based explanation," Applied Financial Economics, Taylor & Francis Journals, vol. 21(6), pages 389-399.
    2. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    3. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    4. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    5. Peter Bernholz & Ernst Baltensperger & David Iselin & Oliver Landmann & Rudolf Minsch, 2015. "Der »Franken-Schock«: Die Freigabe des Schweizer Franken –wer gewinnt und wer verliert?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(05), pages 03-19, March.
    6. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    7. Najah Attig & Oumar Sy, 2023. "Diversification during Hard Times," Financial Analysts Journal, Taylor & Francis Journals, vol. 79(2), pages 45-64, April.
    8. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    9. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    2. Luis Fernando Melo Velandia & Oscar reinaldo Becerra Camargo, 2005. "Medidas de Riesgo, Características y Técnicas de Medición: Una Aplicación del VAR y el ES a la Tasa Interbancaria de Colombia," Borradores de Economia 343, Banco de la Republica de Colombia.
    3. Vatis Christian Kemezang & André Ilaire Djou & Ivette Gnitedem Keubeng, 2024. "Measuring market risk with GARCH models under Basel III: selection and application to German firms," SN Business & Economics, Springer, vol. 4(10), pages 1-30, October.
    4. Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
    5. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    6. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    7. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    8. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    9. Guobin Fan & Eric Girardin & Wong K. Wong & Yong Zeng, 2015. "The Risk of Individual Stocks’ Tail Dependence with the Market and Its Effect on Stock Returns," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-17, November.
    10. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    11. Paula V. Tofoli & Flavio A. Ziegelmann & Osvaldo Candido, 2017. "A Comparison Study of Copula Models for Europea Financial Index Returns," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(10), pages 155-178, October.
    12. Wong, Woon K., 2008. "Backtesting trading risk of commercial banks using expected shortfall," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1404-1415, July.
    13. Alex Karagrigoriou & George-Jason Siouris & Despoina Skilogianni, 2019. "Adjusted Evaluation Measures for Asymmetrically Important Data," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 4(1), pages 41-66, June.
    14. Liu, Lu, 2014. "Extreme downside risk spillover from the United States and Japan to Asia-Pacific stock markets," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 39-48.
    15. Richard Gerlach & Declan Walpole & Chao Wang, 2017. "Semi-parametric Bayesian tail risk forecasting incorporating realized measures of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 199-215, February.
    16. Jian Zhou, 2012. "Multiscale Analysis of International Linkages of REIT Returns and Volatilities," The Journal of Real Estate Finance and Economics, Springer, vol. 45(4), pages 1062-1087, November.
    17. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    18. Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, University of Reading.
    19. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    20. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.

    More about this item

    Keywords

    Backtesting; Historische Simulation; Risikomanagement; Value at Risk; Varianz-Kovarianz-Methode;
    All these keywords.

    JEL classification:

    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pot:statdp:57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Winkler (email available below). General contact details of provider: https://edirc.repec.org/data/lspotde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.